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Motivation for Robust Statistics

◮ Common assumptions such as Gaussianity, linearity and independence are

only approximations to reality.

Robust statistics is a body of knowledge, partly formalised into

’theories of robustness’ relating to deviations from idealised

assumptions in statistics [Hampel et al. (1986)].

◮ Robust statistics may be separated into two distinct but related areas

◮ Robust Estimation - A robustification of classical estimation theory (point

estimation)
◮ Robust Testing - A robustification of the classical theory of statistical

hypothesis testing (interval estimation)
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Motivation for Robust Statistics (Cont’d)

◮ Often engineering systems, such as in communication, are based on a

parametric model where the observations are assumed to be Gaussian

◮ System performance is dependent on the accuracy of this model.

◮ Classical parametric statistics are optimal under exact parametric models.
◮ Performance becomes more uncertain the further we are from the assumed

model.
◮ Incorrect model leads to a performance decrease to an uncertain level.

◮ Systems designed using parametric models are very sensitive to deviations

from the assumed model [Hampel et al. (1986), Huber (1981)].

Solution: Robust estimation of parametric models

The Chinese University of Hong Kong, 21 September 2011 | SPG TUD | A.M. Zoubir | 3 SPG



Motivation for Robust Statistics (Cont’d)

◮ In general, the aims of robust statistics are to:

◮ describe (or fit a model to) the majority of the data

◮ identify (and deal with) outliers or influential points

◮ How far away from Gaussianity are we in reality? Experience shows [Hampel
et al. 1986] that

◮ high quality data sets may contain up to 1% outliers,

◮ low quality data sets may contain more than 10% outliers,

◮ 1 − 10% outliers is common.
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Example: Electricity consumption data
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Motivation for Robust Statistics (Cont’d)

Nonparametric Robust Parametric

Description Model specified in

terms of general

properties

Parametric mo-

del allowing for

deviations

Model completely

specified by several

parameters
Ideal Performance Mediocre/Satisfactory Good Very Good/Excellent

Range of Validity Large Medium Small

Nonparametric Robust Parametric

Robust is the most appropriate approach for real-life applications
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Robust Statistics for Signal Processing

Robust Estimation
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Overview

◮ Measures of Robustness: Quantitative and Qualitative robustness

◮ Location Estimation

◮ Linear Regression Models

◮ Correlated Data

◮ Signal Processing Applications
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Quantitative Robustness

◮ Define the ’neighborhood’ using e.g. the ε contaminated mixture model (or

’gross error model’)

F = {F |F = (1 − ε)F0 + εH},

where F0 is the nominal distribution and H is the contaminating distribution.

◮ Consider

1. maximum bias

b(ε) = sup
F∈F

|Θ(F ) − Θ(F0)|

2. maximum variance

v(ε) = sup
F∈F

AV (F , Θ)
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Quantitative Robustness (Cont’d)

◮ Then the asymptotic breakdown point ε∗ of an estimator at F0 is

ε∗(F0, Θ̂) = sup{ε|b(ε) <∞}.

◮ Loosely speaking, it gives the limiting fraction of gross errors (outliers) the

estimator can cope with (for details, see [Huber (1981) Section 1.4], [Hampel

(1986) Section 2.2]).
◮ In many cases ε

∗ does not depend on F0 and is often the same for all the

usual choices for F .

◮ Maximum bias curve plots the maximum bias (b(ε)) of an estimator with

respect to the fraction of contamination ε
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Quantitative Robutsness: An Example
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Qualitative Robustness

◮ The Influence function, introduced as influence curve [Hampel (1968,1974)],

describes the effect (on an estimator Θ̂) of adding an observation of value x

to a large sample; asymptotically, it is defined by

IF (x , F , Θ) = lim
∆→0

Θ((1 − ∆)F − ∆δ(x)) − Θ(F )

∆

where δ(x) denotes the point mass 1 at x .

◮ Roughly speaking, it is the first derivative of a statistic at F , where x plays

the role of the contamination position.

◮ It measures the normalized asymptotic bias caused by an infinitesimal

contamination at point x in the observations [Hampel (1986)].
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Qualitative Robustness: An Example
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Trade-off Robustness vs. Efficiency

◮ Robustness: resistance of the estimator towards contamination quantified by:

Breakdown Point ε∗, Maximum Bias Curve b(ε), and Influence Function

IF (x , F , Θ).

◮ Efficiency: the asymptotic behavior and variance of the estimator under the

nominal model (clean data) quantified by AV (F , Θ) or IF (x , F , Θ).

AV (F , Θ) =

∫
IF (x , F , Θ)2dF (x)
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Location Estimation

Consider the model

Xt = µ+ εt

under a distribution F such that X ∼ F (x − µ). We wish to estimate µ, given i.i.d

Xt , t = 1, ... , n. The Maximum likelihood estimate is

µ̂ML = arg max
µ

n∑

t=1

log f (xt − µ)

⇒ ∑n
i=1 ψ(xi − µ̂ML) = 0 where ψ = f ′/f

◮ F standard Gaussian: µ̂ is the sample mean

◮ F double Exponential: µ̂ is the sample median
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Example of the Effect of Outliers
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Example: Theoretical Robustness and Efficiency

of the Sample Median

◮ IF(x,Φ,Med) bounded ⇒ sample median robust. Its BP ε∗= 50 %
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M-Estimator

◮ The MLE is asymptotically optimal (unbiased, consistent, achieves CRB) only

if model is correct. If model is incorrect, performance uncertain → possibly

not robust.

◮ Huber’s approach generalises the MLE of a parameter θ of interest for

independent observations by replacing fXt
(xt |θ) by an arbitrary function

ρ(xt , θ).

arg max
θ

N∑

t=1

log fXt
(xt |θ) → arg max

θ

N∑

t=1

ρ(xt , θ)

◮ This estimator is called M-estimator (ML-type estimator).
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M-Estimator (Cont’d)

◮ Let ψ be the derivative of ρ, then

arg max
θ

N∑

t=1

log fXt
(xt |θ) → arg max

θ

N∑

t=1

ρ(xt , θ)

leads to

N∑

t=1

d log fXt
(xt |θ)

dθ
= 0 →

N∑

t=1

ψ(xt , θ) = 0.

◮ ψ is called the score function since it ’scores’ each observation xt .
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Robust M-estimators

◮ The class of M-estimators contains in particular

◮ The sample mean
◮ The sample median
◮ All maximum likelihood estimators

◮ Huber asked the following question

How does one make an M-estimator robust?

◮ Implies determining fX , or equivalently ψ, so that the M-estimator is robust

◮ An M-estimator is qualitatively robust if and only if ψ is bounded and

continuous
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Robust M-estimators
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Linear Regression

Assume the model

Y = Xβ + e

where X and e are independently distributed random variables. Let Y(t) = yt and

x′t be the tth row of the matrix X.

Least-Squares Estimator (LSE)

β̂ = argmin
β

n∑

t=1

rt(β)2

rt(β) = yt − x′tβ, being the tth residual. The LSE solves for

n∑

t=1

rt(β̂)xt = 0
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Effect of Outliers

The regression line is tilted by the outliers
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M-Estimation for Regression

M-Estimator:

β̂ = argmin
β

n∑

t=1

ρ

(
rt(β)

σ̂r

)
⇒

n∑

t=1

ψ

(
rt(β̂)

σ̂r

)
xt = 0

A leverage point (‖xt‖ large) will dominate the equation. Here, σ̂r is a robust

scale of the residuals rt .

Solution:

◮ Redescending function ψ: MM estimator

◮ Down-weight leverage points: GM estimator

◮ Other robust estimators are: Residual Autocovariance (RA-), Least Median

Squares (LMS), Least Trimmed Squares (LTS), S-, τ -Estimators.
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Leverage Points in Regression

LSE and M-Estimator are not qualitatively robust
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Robust Methods for Correlated Data

◮ Difficulty introduced by the correlation

◮ Several types of outliers: Additive, Innovative, patchy, isolated, ...

◮ Different definitions of robustness measures

◮ Estimators need to be adapted to deal with correlation

⇓
Only a few methods exist

◮ 2 Definitions of influence function in the correlated data case ([Künsch

(1981)] and [Martin (1981)])

◮ Breakdown Point (ε∗) still not clearly defined [Genton (2010)]
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Some Robust Estimators for ARMA Models

◮ CML: Cleaned Maximum Likelihood after ’3-σ’ rejection (practical

engineering method) ⇒ it neglects the correlation, bad performance.

◮ Generalized-M (GM): used in Power Systems [Maronna et al. (2006)], not

robust for ARMA; for AR(p), BP (ε∗) decreases with increasing p.

◮ Residual Autocovariance (RA) and truncated RA estimators (TRA) [Bustos

and Yohai (1986)]. RA is not robust and TRA lacks efficiency for ARMA.

◮ Filtered-M: M-estimator combined with robust filter [Maronna (2006)].

Robust but lacks efficiency.

◮ Filtered-τ [Maronna (2006)], Ratios of Medians (RME), Medians of Ratios

(MRE) and Filtered Hellinger based estimator [Chakhchoukh (2010)].
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Importance of Robust Filtering

For an AR(p), a residual rt is evaluated by regressing yt on the p variables

yt−1, ... , yt−p. An observation yt is used in computing p + 1 residuals: rt , ... , rt+p

⇒ BP (ε∗) decreases significantly.

For an ARMA model, one observation will affect all the residuals ⇒ BP ε∗ = 0.

Problem: Propagation of outliers in the data used in the estimation

Solution: use robust residuals computed by a robust filter cleaner [Masreliez

(2010)]:

r̃t = yt − φ1ŷt−1|t−1 − ... − φp ŷt−p|t−1

Cleaning the data with a robust filter improves efficiency
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Robust Filtering of an AR(1)

For an AR(1): Xt = φXt−1 + εt , we use the following robust filtering algorithm:

◮ estimate robustly φ̂, e.g.: φ̂ = Ĉr (1)/Ĉr (0) and run the recursions of the

filter-cleaner; X̂1|1 = X1, P1|1 = MADN(Xt),

Prediction :

X̂2|1 = φ̂X̂1|1;

ε̂2 = Y2 − φ̂X̂1|1

P2|1 = φ̂2P1|1 + σε2

Correction :

X̂2|2 = X̂2|1 + 1√
P2|1

P2|1ψ

(
bε2√
P2|1

)

P2|2 = P2|1 − 1
P2|1

P2
2|1w

(
bε2√
P2|1

)

Go to the next step of the recursion.

◮ Apply the ML to the filtered series {X̂t|t} or:

◮ Test to remove the outliers, e.g.: If ε̂2 > 3
√

P2|1 then X2 is outlying

◮ Apply ML estimator that handles missing data.
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Applications

◮ Wireless Communications: Robust Geolocation, eg: [Hammes (2009)]

◮ Array Processing: Robust Direction of Arrival Estimation, eg: [Tsakalides

(1995)]
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Wireless Communications: Robust geolocation

◮ Geolocation refers to identifying the position of a mobile terminal using a

network of sensors.
◮ Applications for Geolocation arise e.g. in emergency call services, yellow page

services and intelligent transport systems [Caffery (1999)].
◮ We consider wireless positioning of a stationary terminal based on TOA

estimates.
◮ At least three sensors/BSs are needed to solve ambiguities

line-of-sight (LOS) non-line-of-sight (NLOS)
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Problem Statement

◮ Time of arrival (TOA) estimates are multiplied by the speed of light to obtain

the measured distances

rm =
√

(xm − x)2 + (y − ym)2︸ ︷︷ ︸
=hm

+ṽm, m = 1, ... , M ,

where xm, ym are the known coordinates of the BS and x , y describe the

unknown location of the MT. The i.i.d. random variables ṽm have pdf

fṼ (ṽ) = (1 − ε)N (ṽ ; 0,σG ) + εH,

describing sensor noise and errors due to NLOS propagation (H = fG ∗ fη)

where fη may be any pdf with positive mean such that E{H} > 0.
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Linearization

◮ Squaring the nonlinear equation yields

r2
m = h2

m + 2hmṽm + ṽ2
m︸ ︷︷ ︸

=vm(hm)

m = 1, ... , M

◮ For M BSs we have

r = Sθ + v,

where θ = [x y R2]T with R2 = x2 + y2.

◮ Since fV (v) is non-Gaussian and contains outliers due to NLOS, least-squares

estimation suffers from a performance loss.

⇓
Robust methods
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Iterative Robust Algorithm

1. Initialisation: Set i = 0. Obtain an initial estimate of θ, θ̂
0
.

2. Determine residuals: v̂ = r − Sθ̂
i
.

3. Estimate λ, perform transformation KDE.

4. Estimate score function: ϕ̂ = −
f̂ ′V (v)

f̂V (v)
.

5. Update: θ̂
i+1

= θ̂
i
+ µ(STS)−1STϕ̂(v̂) or (STΩS)−1STΩr, Ω = diag(ω), ω = |ϕ̂(v̂)/v̂|

6. Check for convergence: If
‖θ̂ i+1−θ̂ i‖

‖θ̂ i+1‖
< ξ stop, otherwise set i → i + 1 and go to step 2.
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Simulation Settings

◮ Consider 10 BSs each of them collecting 10 measurements.

◮ We compare least-squares (’LS’) with Huber’s M-estimator (’Hc ’) where the

clipping point c = 0.6σ̂V , where σ̂V is estimated using the median absolute

deviation.

◮ Semi-parametric estimators using Newton-Raphson algorithm labeled as

’SPMR’ and the one based on weighted least-squares is ’SPWLS’.

◮ We average over MC = 10, 000 Monte-Carlo runs and σG = 150m.

◮ Performance measure is the mean error distance, i.e.,

MED =
1

MC

MC∑

i=1

√
(x − x̂i )2 + (y − ŷi)2
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Simulation results
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Array Processing: Robust Direction of Arrival

Estimation

◮ Direction of Arrival (DOA) estimates are needed in array processing

◮ Smart Antennas
◮ Space-Time Adaptive Processing
◮ Radar

◮ Classical methods for DOA estimation based on sample covariance matrix are
not robust

◮ Beamformer
◮ Capon’s minimum variance
◮ ML techniques
◮ Subspace methods MUSIC, ESPIRIT
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Array Processing: Robust Direction of Arrival

Estimation

◮ Robust DOA methods exist based on

◮ M-Estimation
◮ Symmetric-Alpha-Stable (SaS) distributions and Fractional Lower Order

Moments (FLOMs)
◮ Gaussian mixture distributions and Space Alternating Generalised Expectation

Maximisation (SAGE)
◮ Nonparametric statistics using the spatial sign function

◮ Former three robust DOA estimators require knowledge of noise

parameters/setting of thresholds/choice of weighting functions

◮ Last nonparametric estimator is simple and requires no prior knowledge or

settings to be chosen
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Array Processing: Robust Direction of Arrival

Estimation

Problem: Estimate the direction-of-arrivals of the sources using the observations

of a sensor array in an impulsive noise environment
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Array Signal Model

Model

yn = Asn + xn, n = 1, ... , N

yn: p-dim snapshot from p array elements

A = (a(θ1), ... , a(θq)): p × q-dim array steering matrix

a(θ): p-dim array steering vector

θ1, ... , θq: directions to the q sources

sn: q-dim element source signal

xn: p-dim spherically symmetric noise
Assumptions

◮ snapshots yn, n = 1, ... , N, are i.i.d.
◮ source signal sn and noise xm are independent for all n,m = 1, ... , N
◮ q < p to avoid identifiability problems
◮ A is of full rank q
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Conventional DOA estimation: MUSIC

The spatial covariance matrix has the following structure

R = A RsA
H + σ2I (1)

From the eigendecomposition of R

R = UΣV (2)

where U = [u1,u2, ... ,uM ] and Σ = diag[λ1,λ2, ... ,λM ].

◮ Construct the signal and the noise subspace, Us and Un, respectively
◮ Search for the peaks in the MUSIC pseudo-Spectrum P(θ)

P(θ) =
1

‖UH
n a(θ)‖2

(3)
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Conventional DOA Estimation

The estimated covariance matrix is given by

R̂ =
1

N

N∑

t=1

xxH

⇓
Robust Estimation:

◮ Normalize each of the snapshots, called spatial sign function

◮ Trim the corrupted observations, requires hypothesis testing

◮ Robust estimation of spatial covariance matrix, e.g. FLOM, maximum

likelihood estimation. Some possible methods for robust covariance

estimation MCD, MVE, MM-, ...
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Spatial Sign Function & Robust Covariance

Spatial Sign Function

◮ Spatial sign function (SSF) of a p-variate complex vector x

u(x) =

(

x
||x||

x 6= 0

0 x = 0

◮ u is a unit length direction vector
◮ Generalises the sign function sgn(x) for 1-D to p-D
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Spatial Sign Function & Robust Covariance

◮ Sample spatial sign covariance matrix (SCM) of

R1 = E [u(x)uH(x)]

R̂1 =
1

N

N∑

n=1

u(xn)u
H(xn)

also known as quadrant correlation
◮ Sample spatial tau covariance matrix (TCM) of

R2 = E [u(x − y)uH(x − y)]

R̂2 =
1

N(N − 1)

N∑

n=1

N∑

m=1

u(xn − xm)uH(xn − xm)
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Simulation results

Setup

◮ Two linear FM signals impinging

on an array of m = 8 sensors in

ULA geometry

◮ DOAs are [−3o 2o]

◮ Total number of snapshots

N = 128

◮ ǫ-contaminated mixture, ǫ = 0.2

and κ = 20
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Conclusions

◮ Robust methods are useful tools for estimation in many real world

applications.

◮ Robust statistics for independently and identically distributed data are

well-established.

◮ There exists a need for robust techniques for correlated data: the more

interesting case for a signal processing practitioner.

◮ Optimality has its advantage, but Robustness is the engineer’s interest.
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