Robust Statistics for Signal Processing TECHNISCHE
UNIVERSITAT

DARMSTADT

Abdelhak M Zoubir

...,

Signal Processing Group

Signal Processing Group
Technische Universitat Darmstadt
email: zoubir@spg.tu-darmstadt.de

URL: www.spg.tu-darmstadt.de

The Chinese University of Hong Kong, 21 September 2011 | SPG TUD | A.M. Zoubir | 1 SPG



[
Motivation for Robust Statistics
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» Common assumptions such as Gaussianity, linearity and independence are
only approximations to reality.

Robust statistics is a body of knowledge, partly formalised into
"theories of robustness’ relating to deviations from idealised
assumptions in statistics [Hampel et al. (1986)].

» Robust statistics may be separated into two distinct but related areas

> Robust Estimation - A robustification of classical estimation theory (point
estimation)

> Robust Testing - A robustification of the classical theory of statistical
hypothesis testing (interval estimation)
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Motivation for Robust Statistics (Cont’d)
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» Often engineering systems, such as in communication, are based on a
parametric model where the observations are assumed to be Gaussian
» System performance is dependent on the accuracy of this model.

» Classical parametric statistics are optimal under exact parametric models.

» Performance becomes more uncertain the further we are from the assumed
model.

> Incorrect model leads to a performance decrease to an uncertain level.

» Systems designed using parametric models are very sensitive to deviations
from the assumed model [Hampel et al. (1986), Huber (1981)].

Solution: Robust estimation of parametric models
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Motivation for Robust Statistics (Cont’d)
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> In general, the aims of robust statistics are to:

» describe (or fit a model to) the majority of the data

> identify (and deal with) outliers or influential points

» How far away from Gaussianity are we in reality? Experience shows [Hampel
et al. 1986] that

» high quality data sets may contain up to 1% outliers,
> low quality data sets may contain more than 10% outliers,

» 1 —10% outliers is common.
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Example: Electricity consumption data TECHNISCHE
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Nonparametric Robust Parametric
Description Model specified in Parametric mo- Model completely
terms of general del allowing for specified by several
properties deviations parameters
Ideal Performance | Mediocre/Satisfactory Good Very Good/Excellent
Range of Validity Large Medium Small
Nonparametric Robust Parametric

Robust is the most appropriate approach for real-life applications
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Robust Estimation
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» Measures of Robustness: Quantitative and Qualitative robustness

Location Estimation

v

v

Linear Regression Models

Correlated Data

v

v

Signal Processing Applications
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> Define the 'neighborhood’ using e.g. the £ contaminated mixture model (or
'gross error model’)

F={F|F=(1-¢e)Fy+eH},

where Fy is the nominal distribution and H is the contaminating distribution.
» Consider
1. maximum bias

b(e) = sup |O(F) = ©(Fo)

2. maximum variance
v(e) = sup AV(F, ©)
FeF
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> Then the asymptotic breakdown point €* of an estimator at Fy is

PN

e*(Fo, ©) = sup{e|b(e) < oo}.

> Loosely speaking, it gives the limiting fraction of gross errors (outliers) the
estimator can cope with (for details, see [Huber (1981) Section 1.4], [Hampel
(1986) Section 2.2]).

> In many cases " does not depend on Fy and is often the same for all the
usual choices for F.

» Maximum bias curve plots the maximum bias (b(g)) of an estimator with
respect to the fraction of contamination &
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> The Influence function, introduced as influence curve [Hampel (1968,1974)],
describes the effect (on an estimator ©) of adding an observation of value x
to a large sample; asymptotically, it is defined by

IF(x, F,©) = lim O((1 — A)F — Ad(x)) — ©(F)
A—0 A
where §(x) denotes the point mass 1 at x.

> Roughly speaking, it is the first derivative of a statistic at F, where x plays
the role of the contamination position.

> |t measures the normalized asymptotic bias caused by an infinitesimal
contamination at point x in the observations [Hampel (1986)].
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Trade-off Robustness vs. Efficiency TECHNISCHE
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» Robustness: resistance of the estimator towards contamination quantified by:
Breakdown Point ¢*, Maximum Bias Curve b(¢g), and Influence Function
IF(x, F,©).

» Efficiency: the asymptotic behavior and variance of the estimator under the
nominal model (clean data) quantified by AV(F,©) or IF(x, F, ©).

AV(F,0) = / IF(x, F,©)?dF(x)
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Consider the model
Xt == ,LL + Et

under a distribution F such that X ~ F(x — p). We wish to estimate (i, given i.i.d
Xi, t =1, ..., n. The Maximum likelihood estimate is

n
P = orgmax 3og s 1)
t=1
= 27:1 Y(xi — fime) =0 where ¢ = f'/f

» F standard Gaussian: [i is the sample mean

» F double Exponential: ji is the sample median
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Example: Theoretical Robustness and Efficiency
of the Sample Median
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> IF(x,®,Med) bounded = sample median robust. Its BP *= 50 %

4
®

T
—%¥— Monte Carlo efficiency
—C— Theoretical efficiency

edian

o
3

o
>

Efficiencx) of the m

.sefmple size (n) of a Gaussian sample
> Median minimizes the maximum bias [Huber (1981)]. When Fy = &,
efficiency of the Median is 2/7 = 0.64 = suggests M-estimators
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M-Estimator
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» The MLE is asymptotically optimal (unbiased, consistent, achieves CRB) only
if model is correct. If model is incorrect, performance uncertain — possibly
not robust.

» Huber's approach generalises the MLE of a parameter 6 of interest for
independent observations by replacing fx,(x;|0) by an arbitrary function

p(xt, 0).

N N
arg max Z log fx, (x:|6) — arg max Z p(x¢, 0)

t=1 t=1

> This estimator is called M-estimator (ML-type estimator).

The Chinese University of Hong Kong, 21 September 2011 | SPG TUD | A.M. Zoubir | 18 S PG



M-Estimator (Cont’d)
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> Let 1) be the derivative of p, then

N
arg max tz_; log fx, (x¢|6)
leads to
% dlog f(xelf) _
— do

N
— arg max ; p(x¢, 0)
N
- > (xe,0) = 0.
t=1

» 1 is called the score function since it 'scores’ each observation x;.
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Robust M-estimators
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» The class of M-estimators contains in particular

> The sample mean

» The sample median

> All maximum likelihood estimators
» Huber asked the following question

How does one make an M-estimator robust?

» Implies determining fx, or equivalently v, so that the M-estimator is robust
» An M-estimator is qualitatively robust if and only if ¢ is bounded and

continuous
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Huber M-estimator is qualitatively robust (¢ or IF bounded and continuous).
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Linear Regression TECHNISCHE
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Assume the model
Y=X3+e

where X and e are independently distributed random variables. Let Y(t) = y; and
x} be the t* row of the matrix X.
Least-Squares Estimator (LSE)

n

B = wmin Y™ (9

r(B) = y: — x,3, being the t* residual. The LSE solves for

n

E ry (ﬂ)xt = 0
t=1
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Effect of Outliers
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The regression line is tilted by the outliers
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M-Estimation for Regression TECHNISCHE
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M-Estimator:
5 N (7B)) L N~y [ 7B)
e () - 2o () -
t=1 t=1
A leverage point (||x¢|| large) will dominate the equation. Here, &, is a robust

scale of the residuals r;.
Solution:

» Redescending function : MM estimator
» Down-weight leverage points: GM estimator

» Other robust estimators are: Residual Autocovariance (RA-), Least Median
Squares (LMS), Least Trimmed Squares (LTS), S-, 7-Estimators.
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Leverage Points in Regression TECHNISCHE
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LSE and M-Estimator are not qualitatively robust

Good leverage
Y ® point

Bad leverage
° point

N

Fate
N

N

Large gap
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Robust Methods for Correlated Data
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v

Difficulty introduced by the correlation

v

Several types of outliers: Additive, Innovative, patchy, isolated, ...

Different definitions of robustness measures

v

v

Estimators need to be adapted to deal with correlation

4

Only a few methods exist

v

2 Definitions of influence function in the correlated data case ([Kiinsch
(1981)] and [Martin (1981)])

Breakdown Point (&*) still not clearly defined [Genton (2010)]

v
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Some Robust Estimators for ARMA Models
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» CML: Cleaned Maximum Likelihood after '3-0" rejection (practical
engineering method) = it neglects the correlation, bad performance.

> Generalized-M (GM): used in Power Systems [Maronna et al. (2006)], not
robust for ARMA,; for AR(p), BP (¢*) decreases with increasing p.

> Residual Autocovariance (RA) and truncated RA estimators (TRA) [Bustos
and Yohai (1986)]. RA is not robust and TRA lacks efficiency for ARMA.

> Filtered-M: M-estimator combined with robust filter [Maronna (2006)].
Robust but lacks efficiency.

> Filtered-7 [Maronna (2006)], Ratios of Medians (RME), Medians of Ratios
(MRE) and Filtered Hellinger based estimator [Chakhchoukh (2010)].
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Importance of Robust Filtering TECHNISCHE
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For an AR(p), a residual r; is evaluated by regressing y; on the p variables
Yt—1,--., Yt—p. An observation y; is used in computing p 4 1 residuals: r¢, ..., reqp
= BP (&*) decreases significantly.

For an ARMA model, one observation will affect all the residuals = BP £* = 0.

Problem: Propagation of outliers in the data used in the estimation

Solution: use robust residuals computed by a robust filter cleaner [Masreliez
(2010)]:

re=yt— ¢1}/t—1\t—1 e ¢p}/t—p|t—1

Cleaning the data with a robust filter improves efficiency
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Robust Filtering of an AR(1)
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For an AR(1): X; = ¢X:—1 + &, we use the following robust filtering algorithm:

> estimate robustly ¢, e.g.: ¢ = 6,(1)/6,(0) and run the recursions of the
filter-cleaner; Xi; = X1, Pyjy = MADN(X:),

Prediction : Correction :
X2\1 = ¢X1\1 )A<2‘2 = )A(2|1 + \/;TIPM@[; ( %21)
=Y - X1 "
P2|1 = ¢2P1|1 + 0.2 Paj = Py — P2\1 ( EI§21>

Go to the next step of the recursion.
> Apply the ML to the filtered series {)A(t‘t} or:
> Test to remove the outliers, e.g.: If £ > 3,/P,; then X; is outlying
» Apply ML estimator that handles missing data.
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> Wireless Communications: Robust Geolocation, eg: [Hammes (2009)]

» Array Processing: Robust Direction of Arrival Estimation, eg: [Tsakalides
(1995)]
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Wireless Communications: Robust geolocation TECHNISCHE
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» Geolocation refers to identifying the position of a mobile terminal using a
network of sensors.

» Applications for Geolocation arise e.g. in emergency call services, yellow page
services and intelligent transport systems [Caffery (1999)].

> We consider wireless positioning of a stationary terminal based on TOA
estimates.

> At least three sensors/BSs are needed to solve ambiguities

i

i

0

A
N

line-of-sight (LOS) non-line-of-sight (NLOS)
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» Time of arrival (TOA) estimates are multiplied by the speed of light to obtain
the measured distances

m = m — X2+ (Y = Ym)? +Vm, m=1,.. M,

=hn,

where X, ym are the known coordinates of the BS and x, y describe the
unknown location of the MT. The i.i.d. random variables V,, have pdf

fy(V) = (1 —e)N(¥;0,06) + €H,

describing sensor noise and errors due to NLOS propagation (H = fg * f;,)
where f, may be any pdf with positive mean such that E{H} > 0.
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Linearization TECHNISCHE

UNIVERSITAT
DARMSTADT

» Squaring the nonlinear equation yields
r2 = h 4+ 2hyVm + 735 m=1,...M
————
=Vim(hm)

» For M BSs we have
r=S60+v,

where 8 = [x y RYT with R? = x2 + y2.
> Since fy(v) is non-Gaussian and contains outliers due to NLOS, least-squares
estimation suffers from a performance loss.

Robust methods
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Iterative Robust Algorithm
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1. Initialisation: Set i = 0. Obtain an initial estimate of 6, 90.
2. Determine residuals: ¢ =r — S@i.
3. Estimate )\, perform transformation KDE.

4. Estimate score function: § = —-

5. Update: " = |8 + 4(STS)~1ST3(4) | or | (STQS)"1STQr, Q = diag(w), w = |3(¥)/9]

6. Check for convergence: If % < € stop, otherwise set i — i+ 1 and go to step 2.
i+1
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Simulation Settings TECHNISCHE
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» Consider 10 BSs each of them collecting 10 measurements.

> We compare least-squares ('LS") with Huber's M-estimator ('H.') where the
clipping point ¢ = 0.65y, where Gy is estimated using the median absolute
deviation.

» Semi-parametric estimators using Newton-Raphson algorithm labeled as
'SPMR’ and the one based on weighted least-squares is 'SPWLS'.

» We average over MC = 10,000 Monte-Carlo runs and o = 150m.
» Performance measure is the mean error distance, i.e.,

MC
1
_ § _ )2 — )2
MED_ MC Pt \/(X X’) +(y .yl)
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MED vs. degree of NLOS contamination. f;, is an exponential distribution with
op = 409m
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Array Processing: Robust Direction of Arrival
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» Direction of Arrival (DOA) estimates are needed in array processing
» Smart Antennas
» Space-Time Adaptive Processing
» Radar
» Classical methods for DOA estimation based on sample covariance matrix are
not robust

» Beamformer
» Capon’s minimum variance

v

ML techniques
Subspace methods MUSIC, ESPIRIT

v
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Array Processing: Robust Direction of Arrival
Estimation
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» Robust DOA methods exist based on
> M-Estimation
» Symmetric-Alpha-Stable (SaS) distributions and Fractional Lower Order
Moments (FLOMs)
> Gaussian mixture distributions and Space Alternating Generalised Expectation
Maximisation (SAGE)
» Nonparametric statistics using the spatial sign function
» Former three robust DOA estimators require knowledge of noise
parameters/setting of thresholds/choice of weighting functions

» Last nonparametric estimator is simple and requires no prior knowledge or
settings to be chosen
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Array Processing: Robust Direction of Arrival
Estimation
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Problem: Estimate the direction-of-arrivals of the sources using the observations
of a sensor array in an impulsive noise environment

@ Source 2
Source 1

, .
T\/ 03 7 Source 3
I ’ e

N P

I N L 7

|

oy
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Sl
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|

Senser Aray Y Y YY
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Array Signal Model TECHNISCHE
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Model
yn:Asn+xn, n:].,...,N

y,: p-dim snapshot from p array elements
A = (a(b1), ...,a(by)): p x g-dim array steering matrix
a(f): p-dim array steering vector
01, ..., 04: directions to the g sources
sn: g-dim element source signal
Xp: p-dim spherically symmetric noise
Assumptions
> snapshots y,, n=1,..., N, are i.i.d.
» source signal s, and noise x,, are independent for all n,m=1,..., N
» g < p to avoid identifiability problems

v

A is of full rank g
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Conventional DOA estimation: MUSIC
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The spatial covariance matrix has the following structure
R=ARA" 52
From the eigendecomposition of R
R=UXV

where U = [uy, up, ..., uy] and X = diag[A1, Az, ..., Am].
» Construct the signal and the noise subspace, Us and U, respectively
» Search for the peaks in the MUSIC pseudo-Spectrum P(6)

PO = omer
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Conventional DOA Estimation TECHNISCHE
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The estimated covariance matrix is given by

Robust Estimation:
» Normalize each of the snapshots, called spatial sign function
» Trim the corrupted observations, requires hypothesis testing
» Robust estimation of spatial covariance matrix, e.g. FLOM, maximum

likelihood estimation. Some possible methods for robust covariance
estimation MCD, MVE, MM-, ...
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Spatial Sign Function & Robust Covariance

TECHNISCHE
UNIVERSITAT
DARMSTADT

Spatial Sign Function

> Spatial sign function (SSF) of a p-variate complex vector x

w={ 73

> u is a unit length direction vector
» Generalises the sign function sgn(x) for 1-D to p-D
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Spatial Sign Function & Robust Covariance TECHNISCHE
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» Sample spatial sign covariance matrix (SCM) of

Ri = E[u(x)u”(x)]

N
L1 u
R]_ = N nE:1 U(Xn)ll (Xn)

also known as quadrant correlation
» Sample spatial tau covariance matrix (TCM) of

Ry = Efu(x — y)u"(x — y)]

",\?2 Z Z - xm H(Xn - Xm)

n=1 m=1
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Setup

» Two linear FM signals impinging
on an array of m = 8 sensors in
ULA geometry

» DOAs are [—3° 29]

RMSE in deg
N
5

| [~ No impuisive Remedy
» Total number of snapshots e R
N = 128 T Mot e en
— Known IF
mjzo -15 -10 -5 0 5 10
H . SNR (dB)
> e-contaminated mixture, € = 0.2 @
and k =20 RMSE DOA Estimation
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» Robust methods are useful tools for estimation in many real world
applications.

» Robust statistics for independently and identically distributed data are
well-established.

» There exists a need for robust techniques for correlated data: the more
interesting case for a signal processing practitioner.

» Optimality has its advantage, but Robustness is the engineer’s interest.
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