Robust Statistics for Signal Processing

Abdelhak M Zoubir

TECHNISCHE UNIVERSITÄT DARMSTADT

Signal Processing Group

Signal Processing Group Technische Universität Darmstadt email: zoubir@spg.tu-darmstadt.de URL: www.spg.tu-darmstadt.de

Motivation for Robust Statistics

 Common assumptions such as Gaussianity, linearity and independence are only *approximations* to reality.

Robust statistics is a body of knowledge, partly formalised into 'theories of robustness' relating to deviations from idealised assumptions in statistics [Hampel et al. (1986)].

- Robust statistics may be separated into two distinct but related areas
 - Robust Estimation A robustification of classical estimation theory (point estimation)
 - Robust Testing A robustification of the classical theory of statistical hypothesis testing (interval estimation)

Motivation for Robust Statistics (Cont'd)

- Often engineering systems, such as in communication, are based on a parametric model where the observations are assumed to be Gaussian
- System performance is dependent on the accuracy of this model.
 - Classical parametric statistics are optimal under exact parametric models.
 - Performance becomes more uncertain the further we are from the assumed model.
 - Incorrect model leads to a performance decrease to an uncertain level.
- ► Systems designed using parametric models are very sensitive to deviations from the assumed model [Hampel *et al.* (1986), Huber (1981)].

Solution: Robust estimation of parametric models

Motivation for Robust Statistics (Cont'd)

- In general, the aims of robust statistics are to:
 - describe (or fit a model to) the majority of the data
 - identify (and deal with) outliers or influential points
- ▶ How far away from Gaussianity are we in reality? Experience shows [Hampel *et al.* 1986] that
 - high quality data sets may contain up to 1% outliers,
 - ▶ low quality data sets may contain more than 10% outliers,
 - 1 10% outliers is common.

Example: Electricity consumption data

Half-hourly daily French electricity consumption on April 27^{th} to June 1^{st} , 2007

One-week differenced French load seasonal time series at 10:00, 2009

Motivation for Robust Statistics (Cont'd)

	Nonparametric	Robust	Parametric
Description	Model specified in	Parametric mo-	Model completely
	terms of general	del allowing for	specified by several
	properties	deviations	parameters
Ideal Performance	Mediocre/Satisfactory	Good	Very Good/Excellent
Range of Validity	Large	Medium	Small

The Chinese University of Hong Kong, 21 September 2011 | SPG TUD | A.M. Zoubir | 6

Robust Statistics for Signal Processing

Robust Estimation

The Chinese University of Hong Kong, 21 September 2011 | SPG TUD | A.M. Zoubir | 7

Overview

- Measures of Robustness: Quantitative and Qualitative robustness
- Location Estimation
- Linear Regression Models
- Correlated Data
- Signal Processing Applications

Quantitative Robustness

 Define the 'neighborhood' using e.g. the ε contaminated mixture model (or 'gross error model')

$$\mathcal{F} = \{F \mid F = (1 - \varepsilon)F_0 + \varepsilon H\},\$$

where F_0 is the nominal distribution and H is the contaminating distribution. • Consider

1. maximum bias

$$b(\varepsilon) = \sup_{F \in \mathcal{F}} |\Theta(F) - \Theta(F_0)|$$

2. maximum variance

$$v(\varepsilon) = \sup_{F \in \mathcal{F}} AV(F, \Theta)$$

Quantitative Robustness (Cont'd)

• Then the asymptotic breakdown point ε^* of an estimator at F_0 is

$$\varepsilon^*(F_0, \hat{\Theta}) = \sup\{\varepsilon | b(\varepsilon) < \infty\}.$$

- Loosely speaking, it gives the limiting fraction of gross errors (outliers) the estimator can cope with (for details, see [Huber (1981) Section 1.4], [Hampel (1986) Section 2.2]).
- In many cases ε^{*} does not depend on F₀ and is often the same for all the usual choices for F.
- Maximum bias curve plots the maximum bias (b(ε)) of an estimator with respect to the fraction of contamination ε

Quantitative Robutsness: An Example

Qualitative Robustness

The Influence function, introduced as influence curve [Hampel (1968,1974)], describes the effect (on an estimator Θ̂) of adding an observation of value x to a large sample; asymptotically, it is defined by

$$IF(x, F, \Theta) = \lim_{\Delta \to 0} \frac{\Theta((1 - \Delta)F - \Delta\delta(x)) - \Theta(F)}{\Delta}$$

where $\delta(x)$ denotes the point mass 1 at x.

- Roughly speaking, it is the first derivative of a statistic at F, where x plays the role of the contamination position.
- It measures the normalized asymptotic bias caused by an infinitesimal contamination at point x in the observations [Hampel (1986)].

Qualitative Robustness: An Example

Influence functions of three estimators for the standard normal distribution $\boldsymbol{\Phi}$

Trade-off Robustness vs. Efficiency

- Robustness: resistance of the estimator towards contamination quantified by: Breakdown Point ε*, Maximum Bias Curve b(ε), and Influence Function IF(x, F, Θ).
- Efficiency: the asymptotic behavior and variance of the estimator under the nominal model (clean data) quantified by AV(F, Θ) or IF(x, F, Θ).

$$AV(F,\Theta) = \int IF(x,F,\Theta)^2 dF(x)$$

Location Estimation

Consider the model

$$X_t = \mu + \varepsilon_t$$

under a distribution F such that $X \sim F(x - \mu)$. We wish to estimate μ , given i.i.d X_t , t = 1, ..., n. The Maximum likelihood estimate is

$$\widehat{\mu}_{ML} = \arg \max_{\mu} \sum_{t=1}^{n} \log f(x_t - \mu)$$

$$\Rightarrow \sum_{i=1}^{n} \psi(x_i - \widehat{\mu}_{ML}) = 0$$
 where $\psi = f'/f$

- F standard Gaussian: $\hat{\mu}$ is the sample mean
- *F* double Exponential: $\hat{\mu}$ is the sample median

Example of the Effect of Outliers

Effect of outliers on the bias of the sample mean and sample median

Example: Theoretical Robustness and Efficiency of the Sample Median

▶ IF(x, Φ ,Med) bounded \Rightarrow sample median robust. Its BP $\varepsilon^* = 50$ %

▶ Median minimizes the maximum bias [Huber (1981)]. When $F_0 = \Phi$, efficiency of the Median is $2/\pi = 0.64 \Rightarrow$ suggests M-estimators

The Chinese University of Hong Kong, 21 September 2011 | SPG TUD | A.M. Zoubir | 17

M-Estimator

- ► The MLE is asymptotically optimal (unbiased, consistent, achieves CRB) only if model is correct. If model is incorrect, performance uncertain → possibly not robust.
- Huber's approach generalises the MLE of a parameter θ of interest for independent observations by replacing f_{Xt}(xt|θ) by an arbitrary function ρ(xt, θ).

$$\arg \max_{\theta} \sum_{t=1}^{N} \log f_{X_t}(x_t|\theta) \longrightarrow \arg \max_{\theta} \sum_{t=1}^{N} \rho(x_t, \theta)$$

This estimator is called M-estimator (ML-type estimator).

M-Estimator (Cont'd)

• Let ψ be the derivative of ρ , then

$$\arg \max_{\theta} \sum_{t=1}^{N} \log f_{X_t}(x_t|\theta) \longrightarrow \arg \max_{\theta} \sum_{t=1}^{N} \rho(x_t, \theta)$$

leads to

$$\sum_{t=1}^{N} \frac{d \log f_{X_t}(x_t | \theta)}{d \theta} = 0 \qquad \rightarrow \qquad \sum_{t=1}^{N} \psi(x_t, \theta) = 0.$$

• ψ is called the score function since it 'scores' each observation x_t .

Robust M-estimators

- The class of M-estimators contains in particular
 - The sample mean
 - The sample median
 - All maximum likelihood estimators
- Huber asked the following question

How does one make an M-estimator robust?

- Implies determining f_X , or equivalently ψ , so that the M-estimator is robust
- \blacktriangleright An M-estimator is qualitatively robust if and only if ψ is bounded and continuous

Robust M-estimators

Huber M-estimator is qualitatively robust (ψ or IF bounded and continuous).

Linear Regression

Assume the model

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{e}$$

where **X** and **e** are independently distributed random variables. Let $\mathbf{Y}(t) = y_t$ and \mathbf{x}'_t be the t^{th} row of the matrix **X**. Least-Squares Estimator (LSE)

$$\widehat{eta} = \arg\min_{eta} \sum_{t=1}^n r_t(eta)^2$$

 $r_t(oldsymbol{eta}) = y_t - \mathbf{x}_t'oldsymbol{eta}$, being the t^{th} residual. The LSE solves for

$$\sum_{t=1}^n r_t(\widehat{\boldsymbol{\beta}}) \mathbf{x}_t = \mathbf{0}$$

The Chinese University of Hong Kong, 21 September 2011 | SPG TUD | A.M. Zoubir | 22

Effect of Outliers

M-Estimation for Regression

M-Estimator:

$$\widehat{\boldsymbol{\beta}} = \arg\min_{\boldsymbol{\beta}} \sum_{t=1}^{n} \rho\left(\frac{r_t(\boldsymbol{\beta})}{\widehat{\sigma}_r}\right) \Rightarrow \sum_{t=1}^{n} \psi\left(\frac{r_t(\widehat{\boldsymbol{\beta}})}{\widehat{\sigma}_r}\right) \mathbf{x}_t = \mathbf{0}$$

A leverage point ($||x_t||$ large) will dominate the equation. Here, $\hat{\sigma}_r$ is a robust scale of the residuals r_t .

Solution:

- Redescending function ψ : MM estimator
- Down-weight leverage points: GM estimator
- Other robust estimators are: Residual Autocovariance (RA-), Least Median Squares (LMS), Least Trimmed Squares (LTS), S-, *τ*-Estimators.

Leverage Points in Regression

LSE and M-Estimator are not qualitatively robust

Robust Methods for Correlated Data

- Difficulty introduced by the correlation
- Several types of outliers: Additive, Innovative, patchy, isolated, ...
- Different definitions of robustness measures
- Estimators need to be adapted to deal with correlation

Only a few methods exist

- 2 Definitions of influence function in the correlated data case ([Künsch (1981)] and [Martin (1981)])
- Breakdown Point (ε^*) still not clearly defined [Genton (2010)]

Some Robust Estimators for ARMA Models

- ► CML: Cleaned Maximum Likelihood after '3-σ' rejection (practical engineering method) ⇒ it neglects the correlation, bad performance.
- Generalized-M (GM): used in Power Systems [Maronna et al. (2006)], not robust for ARMA; for AR(p), BP (ε^{*}) decreases with increasing p.
- Residual Autocovariance (RA) and truncated RA estimators (TRA) [Bustos and Yohai (1986)]. RA is not robust and TRA lacks efficiency for ARMA.
- Filtered-M: M-estimator combined with robust filter [Maronna (2006)]. Robust but lacks efficiency.
- ▶ Filtered-*τ* [Maronna (2006)], Ratios of Medians (RME), Medians of Ratios (MRE) and Filtered Hellinger based estimator [Chakhchoukh (2010)].

Importance of Robust Filtering

For an AR(*p*), a residual r_t is evaluated by regressing y_t on the *p* variables y_{t-1}, \ldots, y_{t-p} . An observation y_t is used in computing p + 1 residuals: $r_t, \ldots, r_{t+p} \Rightarrow BP(\varepsilon^*)$ decreases significantly.

For an ARMA model, one observation will affect all the residuals \Rightarrow BP $\varepsilon^* = 0$.

Problem: Propagation of outliers in the data used in the estimation **Solution:** use robust residuals computed by a robust filter cleaner [Masreliez (2010)]:

$$\widetilde{r}_t = y_t - \phi_1 \widehat{y}_{t-1|t-1} - \dots - \phi_p \widehat{y}_{t-p|t-1}$$

Cleaning the data with a robust filter improves efficiency

Robust Filtering of an AR(1)

For an AR(1): $X_t = \phi X_{t-1} + \varepsilon_t$, we use the following robust filtering algorithm:

▶ estimate robustly $\hat{\phi}$, e.g.: $\hat{\phi} = \hat{C}_r(1)/\hat{C}_r(0)$ and run the recursions of the filter-cleaner; $\hat{X}_{1|1} = X_1$, $P_{1|1} = MADN(X_t)$,

Prediction : Correction : $\hat{X}_{2|1} = \hat{\phi} \hat{X}_{1|1};$ $\hat{X}_{2|2} = \hat{X}_{2|1} + \frac{1}{\sqrt{P_{2|1}}} P_{2|1} \psi\left(\frac{\hat{\varepsilon}_2}{\sqrt{P_{2|1}}}\right)$ $\hat{\varepsilon}_2 = Y_2 - \hat{\phi} \hat{X}_{1|1}$ $P_{2|2} = P_{2|1} - \frac{1}{P_{2|1}} P_{2|1}^2 \psi\left(\frac{\hat{\varepsilon}_2}{\sqrt{P_{2|1}}}\right)$ $P_{2|1} = \hat{\phi} 2 P_{1|1} + \sigma_{\varepsilon} 2$ $P_{2|2} = P_{2|1} - \frac{1}{P_{2|1}} P_{2|1}^2 \psi\left(\frac{\hat{\varepsilon}_2}{\sqrt{P_{2|1}}}\right)$

Go to the next step of the recursion.

- ▶ Apply the ML to the filtered series {X̂_{t|t}} or:
- Test to remove the outliers, e.g.: If $\hat{\varepsilon}_2 > 3\sqrt{P_{2|1}}$ then X_2 is outlying
- Apply ML estimator that handles missing data.

Applications

- ▶ Wireless Communications: Robust Geolocation, eg: [Hammes (2009)]
- Array Processing: Robust Direction of Arrival Estimation, eg: [Tsakalides (1995)]

Wireless Communications: Robust geolocation

- Geolocation refers to identifying the position of a mobile terminal using a network of sensors.
- Applications for Geolocation arise e.g. in emergency call services, yellow page services and intelligent transport systems [Caffery (1999)].
- We consider wireless positioning of a stationary terminal based on TOA estimates.
- At least three sensors/BSs are needed to solve ambiguities

Problem Statement

 Time of arrival (TOA) estimates are multiplied by the speed of light to obtain the measured distances

$$r_m = \underbrace{\sqrt{(x_m - x)^2 + (y - y_m)^2}}_{=h_m} + \tilde{v}_m, \qquad m = 1, ..., M,$$

where x_m , y_m are the known coordinates of the BS and x, y describe the unknown location of the MT. The i.i.d. random variables \tilde{v}_m have pdf

$$f_{\tilde{V}}(\tilde{v}) = (1 - \varepsilon)\mathcal{N}(\tilde{v}; 0, \sigma_G) + \varepsilon \mathcal{H},$$

describing sensor noise and errors due to NLOS propagation ($\mathcal{H} = f_G * f_\eta$) where f_η may be any pdf with positive mean such that $E{\mathcal{H}} > 0$.

Linearization

Squaring the nonlinear equation yields

$$r_m^2 = h_m^2 + \underbrace{2h_m \tilde{v}_m + \tilde{v}_m^2}_{=v_m(h_m)} \qquad m = 1, \dots, M$$

For M BSs we have

$$\mathbf{r} = \mathbf{S}\boldsymbol{\theta} + \mathbf{v},$$

- where $\boldsymbol{\theta} = [x \ y \ R^2]^{\mathsf{T}}$ with $R^2 = x^2 + y^2$.
- ► Since f_V(v) is non-Gaussian and contains outliers due to NLOS, least-squares estimation suffers from a performance loss.

Iterative Robust Algorithm

- **1.** Initialisation: Set i = 0. Obtain an initial estimate of θ , $\hat{\theta}^0$.
- **2. Determine residuals:** $\hat{\mathbf{v}} = \mathbf{r} \mathbf{S}\hat{\boldsymbol{\theta}}^{i}$.
- 3. Estimate λ , perform transformation KDE.
- **4. Estimate score function:** $\hat{\varphi} = -\frac{\hat{f}_V'(v)}{\hat{f}_V(v)}$.

5. Update:
$$\hat{\boldsymbol{\theta}}^{i+1} = \left[\hat{\boldsymbol{\theta}}^i + \mu(\mathbf{S}^{\mathsf{T}}\mathbf{S})^{-1}\mathbf{S}^{\mathsf{T}}\hat{\boldsymbol{\varphi}}(\hat{\mathbf{v}}) \right]$$
 or $\left[(\mathbf{S}^{\mathsf{T}}\Omega\mathbf{S})^{-1}\mathbf{S}^{\mathsf{T}}\Omega\mathbf{r}, \ \Omega = \operatorname{diag}(\boldsymbol{\omega}), \ \boldsymbol{\omega} = |\hat{\boldsymbol{\varphi}}(\hat{\mathbf{v}})/\hat{\mathbf{v}}| \right]$
6. Check for convergence: If $\frac{\|\hat{\boldsymbol{\theta}}_{i+1}-\hat{\boldsymbol{\theta}}_i\|}{\|\hat{\boldsymbol{\theta}}_{i+1}\|} < \xi$ stop, otherwise set $i \to i+1$ and go to step 2.

Simulation Settings

- Consider 10 BSs each of them collecting 10 measurements.
- ▶ We compare least-squares ('LS') with Huber's M-estimator (' H_c ') where the clipping point $c = 0.6\hat{\sigma}_V$, where $\hat{\sigma}_V$ is estimated using the median absolute deviation.
- Semi-parametric estimators using Newton-Raphson algorithm labeled as 'SPMR' and the one based on weighted least-squares is 'SPWLS'.
- We average over MC = 10,000 Monte-Carlo runs and $\sigma_G = 150m$.
- Performance measure is the mean error distance, i.e.,

$$MED = rac{1}{MC} \sum_{i=1}^{MC} \sqrt{(x - \hat{x}_i)^2 + (y - \hat{y}_i)^2}$$

Simulation results

MED vs. degree of NLOS contamination. ${\it f}_\eta$ is an exponential distribution with $\sigma_\eta = 409 m$

Array Processing: Robust Direction of Arrival Estimation

- > Direction of Arrival (DOA) estimates are needed in array processing
 - Smart Antennas
 - Space-Time Adaptive Processing
 - Radar
- Classical methods for DOA estimation based on sample covariance matrix are not robust
 - Beamformer
 - Capon's minimum variance
 - ML techniques
 - Subspace methods MUSIC, ESPIRIT

Array Processing: Robust Direction of Arrival Estimation

- Robust DOA methods exist based on
 - M-Estimation
 - Symmetric-Alpha-Stable (SaS) distributions and Fractional Lower Order Moments (FLOMs)
 - Gaussian mixture distributions and Space Alternating Generalised Expectation Maximisation (SAGE)
 - Nonparametric statistics using the spatial sign function
- Former three robust DOA estimators require knowledge of noise parameters/setting of thresholds/choice of weighting functions
- Last nonparametric estimator is simple and requires no prior knowledge or settings to be chosen

Array Processing: Robust Direction of Arrival Estimation

Problem: Estimate the direction-of-arrivals of the sources using the observations of a sensor array in an impulsive noise environment

Array Signal Model

Model

$$\mathbf{y}_n = \mathbf{A}\mathbf{s}_n + \mathbf{x}_n, \qquad n = 1, \dots, N$$

y_n: *p*-dim snapshot from *p* array elements

 $\mathbf{A} = (\mathbf{a}(heta_1), ..., \mathbf{a}(heta_q))$: p imes q-dim array steering matrix

 $\mathbf{a}(\theta)$: *p*-dim array steering vector

 $\theta_1, \ldots, \theta_q$: directions to the q sources

 \mathbf{s}_n : q-dim element source signal

x_n: *p*-dim spherically symmetric noise Assumptions

- snapshots \mathbf{y}_n , n = 1, ..., N, are i.i.d.
- ▶ source signal \mathbf{s}_n and noise \mathbf{x}_m are independent for all n, m = 1, ..., N
- q
- A is of full rank q

Conventional DOA estimation: MUSIC

The spatial covariance matrix has the following structure

$$\mathbf{R} = \mathbf{A} \ \mathbf{R}_{s} \mathbf{A}^{H} + \sigma^{2} \mathbf{I} \tag{1}$$

From the eigendecomposition of R

$$\mathbf{R} = \mathbf{U} \mathbf{\Sigma} \mathbf{V} \tag{2}$$

where $\mathbf{U} = [\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_M]$ and $\mathbf{\Sigma} = \text{diag}[\lambda_1, \lambda_2, \dots, \lambda_M]$.

- Construct the signal and the noise subspace, \mathbf{U}_s and \mathbf{U}_n , respectively
- Search for the peaks in the MUSIC pseudo-Spectrum $P(\theta)$

$$P(\theta) = \frac{1}{\|\mathbf{U}_{n}^{H}\mathbf{a}(\theta)\|^{2}}$$
(3)

Conventional DOA Estimation

The estimated covariance matrix is given by

$$\hat{\mathbf{R}} = \frac{1}{N} \sum_{t=1}^{N} \mathbf{x} \mathbf{x}^{H}$$

$$\mathbf{Robust Estimation:}$$

- Normalize each of the snapshots, called spatial sign function
- Trim the corrupted observations, requires hypothesis testing
- Robust estimation of spatial covariance matrix, e.g. FLOM, maximum likelihood estimation. Some possible methods for robust covariance estimation MCD, MVE, MM-, ...

Spatial Sign Function & Robust Covariance

Spatial Sign Function

Spatial sign function (SSF) of a *p*-variate complex vector x

$$\mathbf{u}(\mathbf{x}) = \begin{cases} \frac{x}{||\mathbf{x}||} & \mathbf{x} \neq 0\\ \mathbf{0} & \mathbf{x} = 0 \end{cases}$$

- u is a unit length direction vector
- Generalises the sign function sgn(x) for 1-D to p-D

Spatial Sign Function & Robust Covariance

Sample spatial sign covariance matrix (SCM) of

$$R_1 = E[\mathbf{u}(\mathbf{x})\mathbf{u}^H(\mathbf{x})]$$

$$\hat{R}_1 = \frac{1}{N} \sum_{n=1}^{N} \mathbf{u}(\mathbf{x}_n) \mathbf{u}^H(\mathbf{x}_n)$$

also known as quadrant correlation

Sample spatial tau covariance matrix (TCM) of

$$R_2 = E[\mathbf{u}(\mathbf{x} - \mathbf{y})\mathbf{u}^H(\mathbf{x} - \mathbf{y})]$$

$$\hat{R}_2 = \frac{1}{N(N-1)} \sum_{n=1}^{N} \sum_{m=1}^{N} \mathbf{u}(\mathbf{x}_n - \mathbf{x}_m) \mathbf{u}^H(\mathbf{x}_n - \mathbf{x}_m)$$

The Chinese University of Hong Kong, 21 September 2011 | SPG TUD | A.M. Zoubir | 44

Simulation results

Setup

- Two linear FM signals impinging on an array of m = 8 sensors in ULA geometry
- ▶ DOAs are [-3^o 2^o]
- Total number of snapshots
 N = 128
- *ϵ*-contaminated mixture, *ϵ* = 0.2
 and *κ* = 20

RMSE DOA Estimation

Conclusions

- Robust methods are useful tools for estimation in many real world applications.
- Robust statistics for independently and identically distributed data are well-established.
- There exists a need for robust techniques for correlated data: the more interesting case for a signal processing practitioner.
- > Optimality has its advantage, but *Robustness* is the engineer's interest.

Robust Statistics for Signal Processing

References

The Chinese University of Hong Kong, 21 September 2011 | SPG TUD | A.M. Zoubir | 47

F. Hampel, E. Ronchetti, P. Rousseeuw, and W. Stahel. *Robust Statistics, The Approach Based on Influence Functions.* John Wiley, 1986.

P. Huber and E.M. Ronchetti. *Robust Statistics*. 2nd edition.

Wiley, 2009.

R.A. Maronna, R.D. Martin and V.J. Yohai. *Robust Statistics Theory and Methods*. John Wiley, 2006.

P. Rousseeuw and A. Leroy. *Robust Regression and Outlier Detection.* John Wiley, 1987.

R. Staudte and S. Sheather. *Robust Estimation and Testing.* John Wiley, 1990.

R. Wilcox.

Introduction to Robust Estimation and Hypothesis Testing. Academic Press, 1997.

O.H. Bustos and V.J. Yohai

Robust estimates for ARMA models.

J. Amer. Statist. Assoc., 81:155-168, 1986.

A.J. Fox

Outliers in Time Series.

J. R. Stat. Soc. Ser. B, 34:350-363, 1972.

M.G. Genton and A. Lucas

Comprehensive definitions of breakdown-points for independent and dependent observations.

J. R. Stat. Soc. Ser. B, 65:81-94, 2003.

R.D. Martin and V.J. Yohai Influence functionals for time series. *Ann. Statist.*, 14:781-818, 1986.

N. Muler, D-Peña and V.J. Yohai Robust Estimation for ARMA models. Ann. Statist., 37(2):816-840, 2009.

H. Künsch, Infinitesimal robustness for autoregressive processes. *Ann. Statist.*, 12:843–863, 1984.

C. J. Masreliez, and R. D. Martin.

Robust Bayesian estimation for the linear model and robustifying the Kalman filter. *IEEE Transactions on Automatic Control*, 22(3):361–371, 1977.

Y. Chakhchoukh.

Contribution to the robust estimation of SARIMA models. Application to short term load forecasting of electricity consumption

In Ph.D. Thesis, University of Paris XI, Paris, 2010.

Yin et. al.

Weighted median filters: A tutorial.

IEEE Transactions on Circuits and Systems-II: Analog and Digital Signal Processing, 43(3):157–192, March 1996.

F Gustafsson and F Gunnarsson

Mobile positioning using wireless networks: possibilities and fundamental limitations based on available wireless network measurements

IEEE Signal Processing Magazine, 22(4):41-53, 2005.

U. Hammes.

Robust positioning algorithms for wireless networks

In Ph.D. Thesis, TU Darmstadt, Darmstadt, 2009.

P Tsakalides

Subspace-based direction finding in alpha-stable noise environments.

In IEEE International Conference on Acoustics, Speech and Signal Processing, pages 2092-5. Detroit. USA. 1995.