Exploring Nonlinear Constraint Optimization and their Applications

Benjamin W. Wah

Department of Electrical and Computer Engineering and the Coordinated Science Laboratory University of Illinois at Urbana-Champaign URL: http://manip.crhc.uiuc.edu

Outline

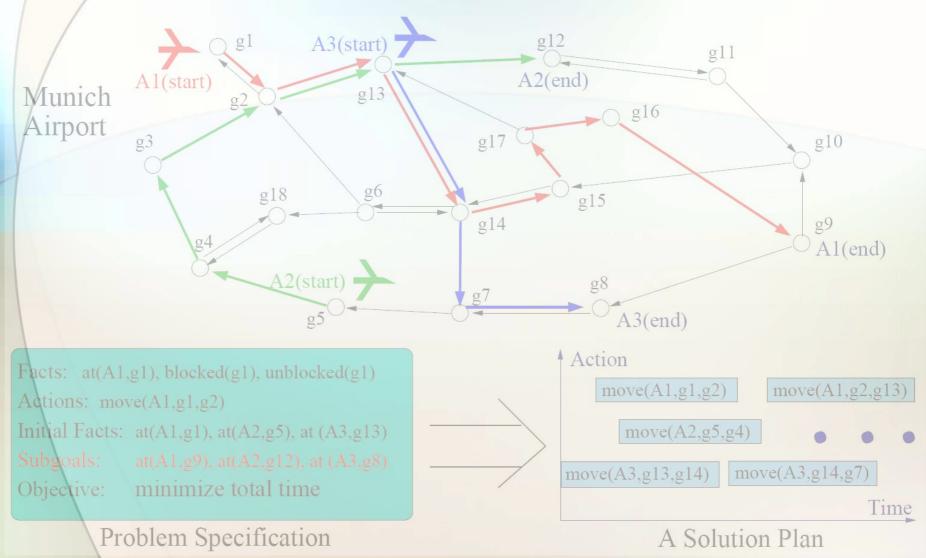
Observation

- Constraints in many application problems are structured
- Approach
 - Partition problem by its constraints into subproblems
- Issues addressed
 - Resolution of violated global constraints
 - Automated analysis of problem structure and its partitioning
 - Optimality of partitioning
 - Demonstrations of improvements
- Conclusions

Nonlinear Constrained Optimization

- An application problem defined by
 - A set of mixed (integer and real) variables
 - A nonlinear objective function
 - A set of nonlinear constraints (conditions to be satisfied in the application)
- Exists in every engineering field
 - Planning of spacecraft and satellite operations
 - VLSI placement of components on a CPU chip
 - Design of aircrafts
 - Design of a petroleum pipeline

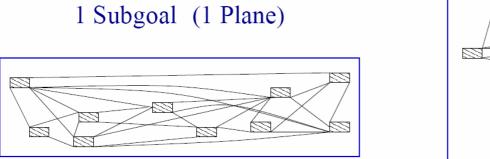
An Airport Planning Example

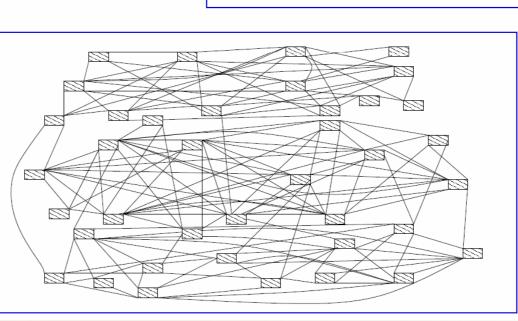


I ILLINOIS

Constraints in AIRPORT

2 Subgoals (2 Planes)

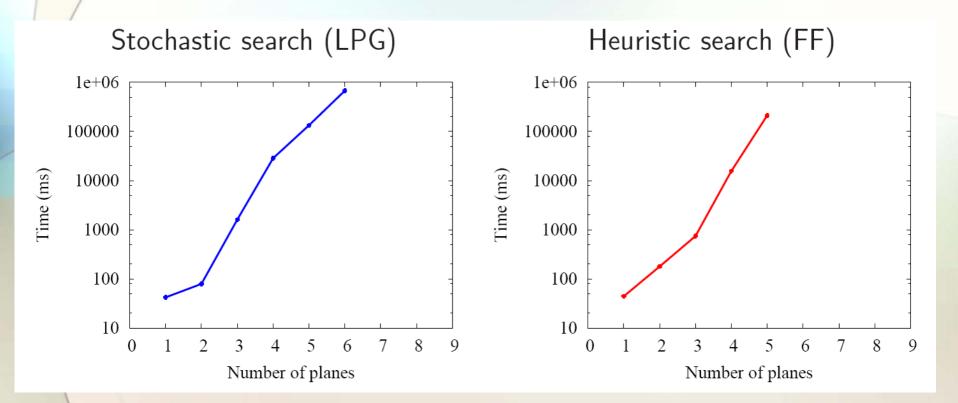




3 Subgoals (3 Planes)

I ILLINOIS

Exponential Complexity



(Winners of 2nd and 3rd International Planning Competitions)

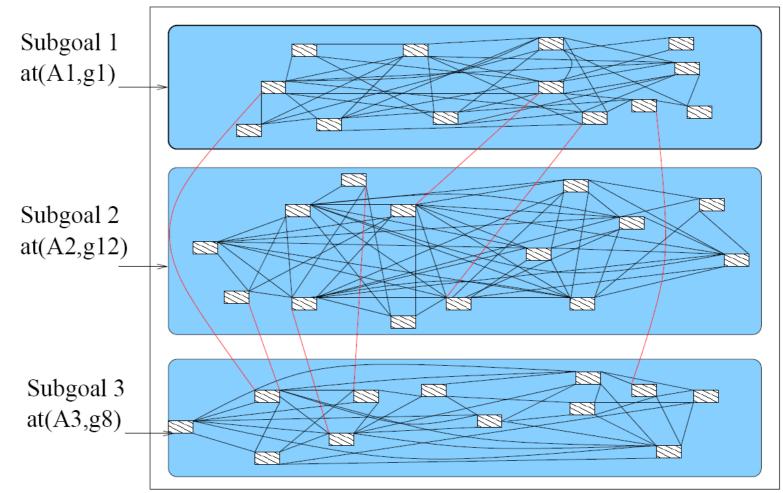
I ILLINOIS

Real Constraints Are Structured

- Constraints model entities and actions with spatial or temporal locality
- They may model:
 - Relations among components in close proximity for problems of physical structures
 - Relations among actions close to each other in time for scheduling problems
- A majority of the application problems encountered have structured constraints

Constraint Locality in AIRPORT

AIRPORT-4 instance



Strong spatial locality of constraints

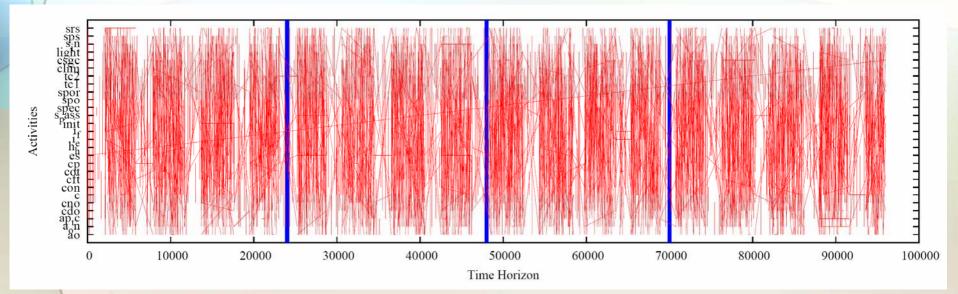
Constraint Optimization

I ILLINOIS

8

Operations Planning of CX-1 Satellite

Strong temporal locality of constraints



Measure ozone data and download to ground for analysis

I ILLINOIS

Constraint Locality in MINLP

TRIMLON

- Minimize the trim loss in producing a set of paper rolls from raw paper rolls
- Trimlon12 has 168 variables (integer n, real y, m) and 72 constraints
 - Not solvable by any existing MINLP solver from starting point specified

variables: objective: subject to:

LLINOIS

$$y[j], m[j], n[j,i] \text{ where } i = 1, \cdots, I; j = 1, \cdots, J$$

$$\min_{z=(y,m,n)} f(z) = \sum_{j=1}^{J} (c[j] \cdot m[j] + C[j] \cdot y[j]) \quad (OBJ)$$

$$B_{min} \leq \sum_{i=1}^{I} (b[i] \cdot n[i,j]) \leq B_{max} \quad (C1)$$

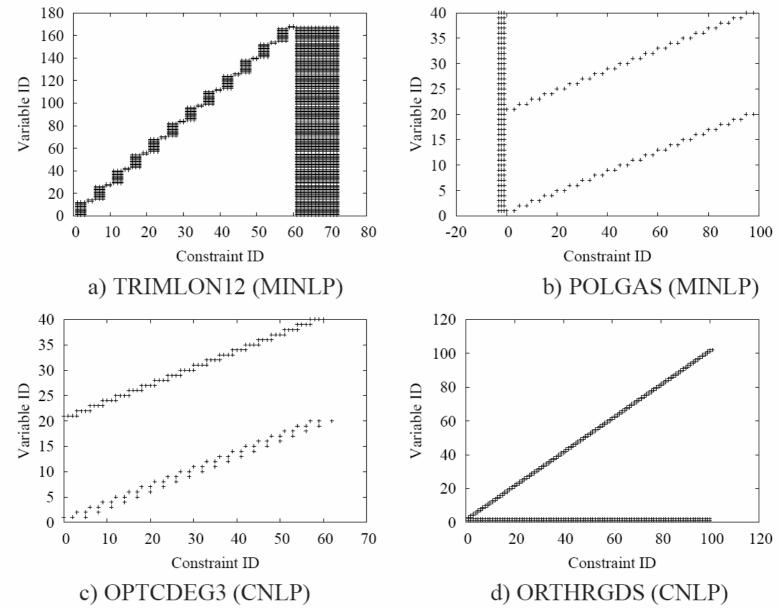
$$\sum_{i=1}^{I} n[i,j] - N_{max} \leq 0 \quad (C2)$$

$$y[i] - m[j] \leq 0 \quad (C3)$$

$$m[j] - M \cdot y[j] \leq 0 \quad (C4)$$

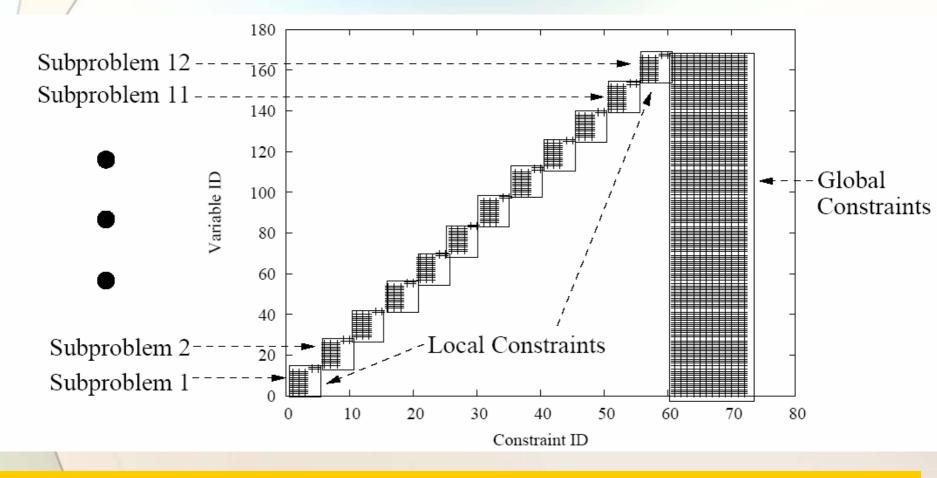
$$Nord[i] - \sum_{j=1}^{J} (m[j] \cdot n[i,j]) \leq 0. \quad (C5)$$

Regular Constraint Structure



I ILLINOIS

Partitioning of TRIMLON12



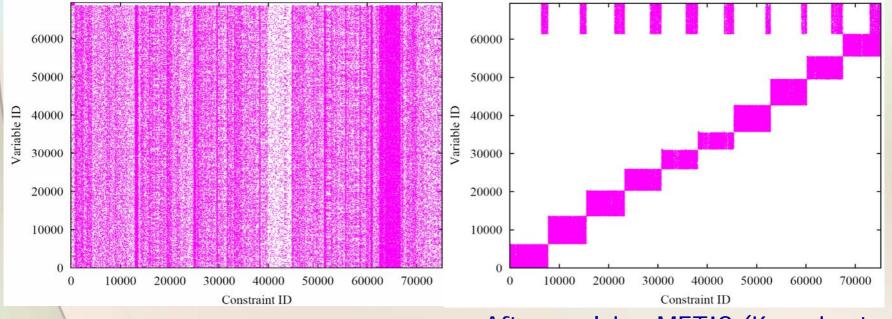
12 out of 72 constraints (16.7%) are global constraints

I ILLINOIS

Standard Cell Placements

IBM10 benchmark with pads

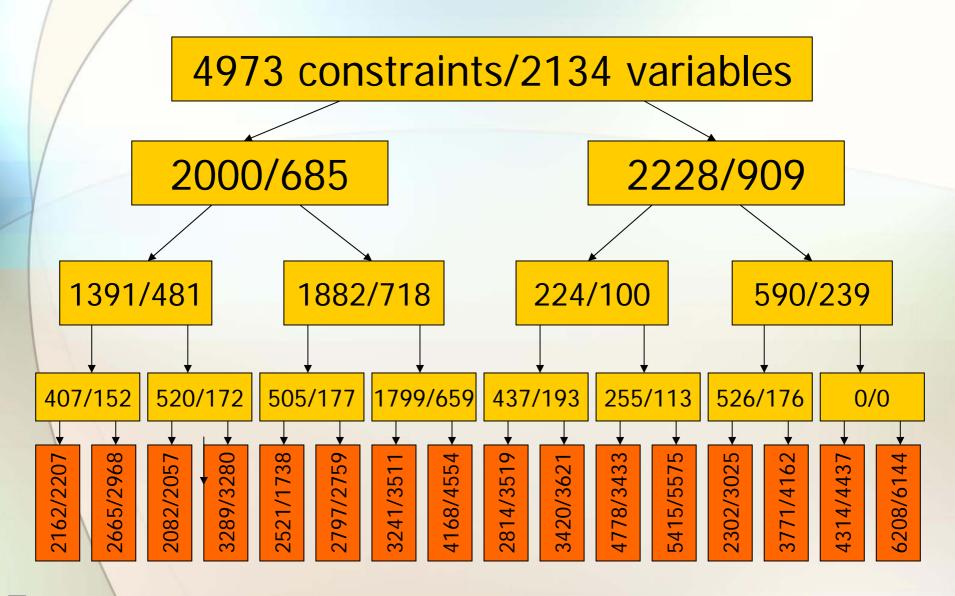
- 69,429 cells (744 pads)
- 75,196 nets, 2-41 elements in each netlist



After applying METIS (Karypis et al.)

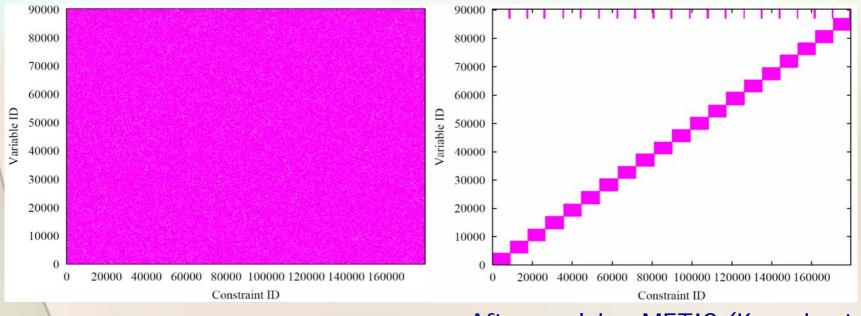
I ILLINOIS

Hierarchical Decomposition of IBM10



Grid-Pebbling Problem (SAT Benchmark)

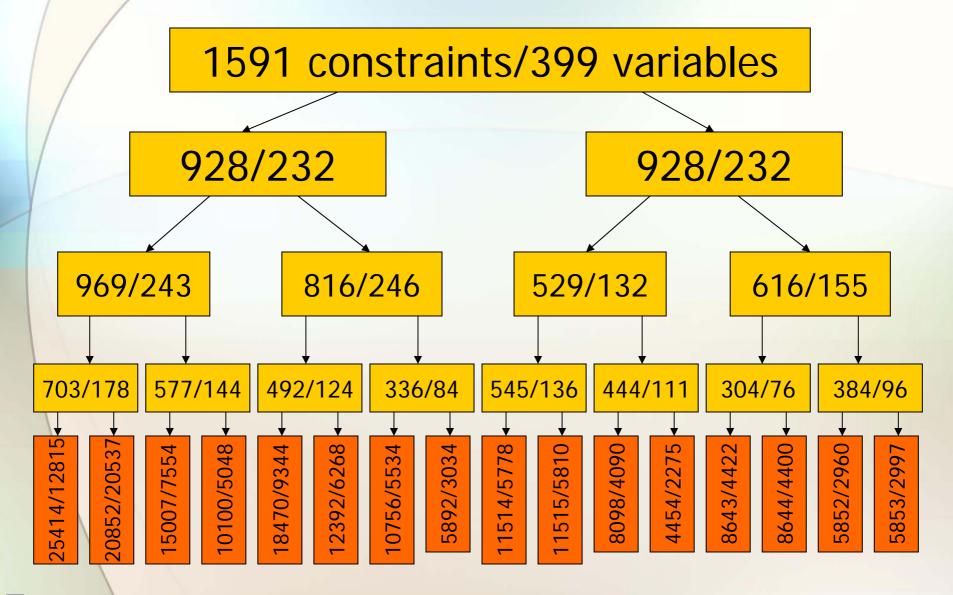
- Scheduling precedence graphs in dependent task systems
 - 90,300 variables, 179,701 constraints



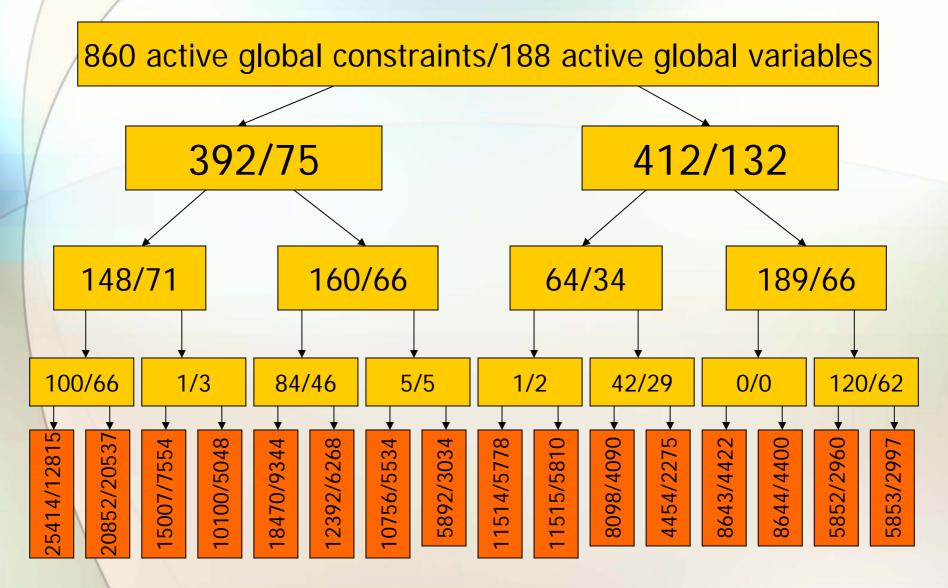
After applying METIS (Karypis et al.)

I ILLINOIS

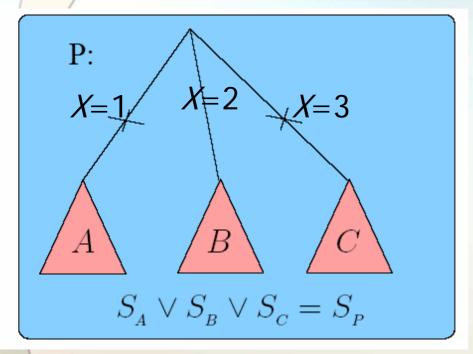
Hierarchical Decomposition of GridPbl



Small Number of Active Global Constraints



Subspace Partitioning



Subspace Partitioning

Partition P by branching on the values of a variable

Solve P by choosing the correct path and by solving the subproblem

Overhead for solving each subproblem is similar to that of P

Hierarchical Subspace Partitioning

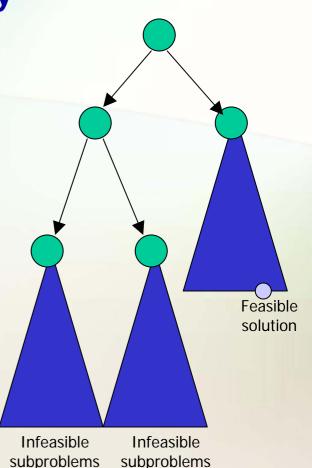
Recursively partition each subproblem by assigning values to variables (*guided* by heuristic functions)

Prune infeasible assignments by bounds or infeasibility (*easily computed*)

Backtrack to new variable assignments

Evaluate many subproblems to discover the "correct" variable assignments

Examples: B&B, B&R, GBD, OA, GCD



OR tree

Constraint Partitioning

P:

G

Partition P by its constraints into subproblems

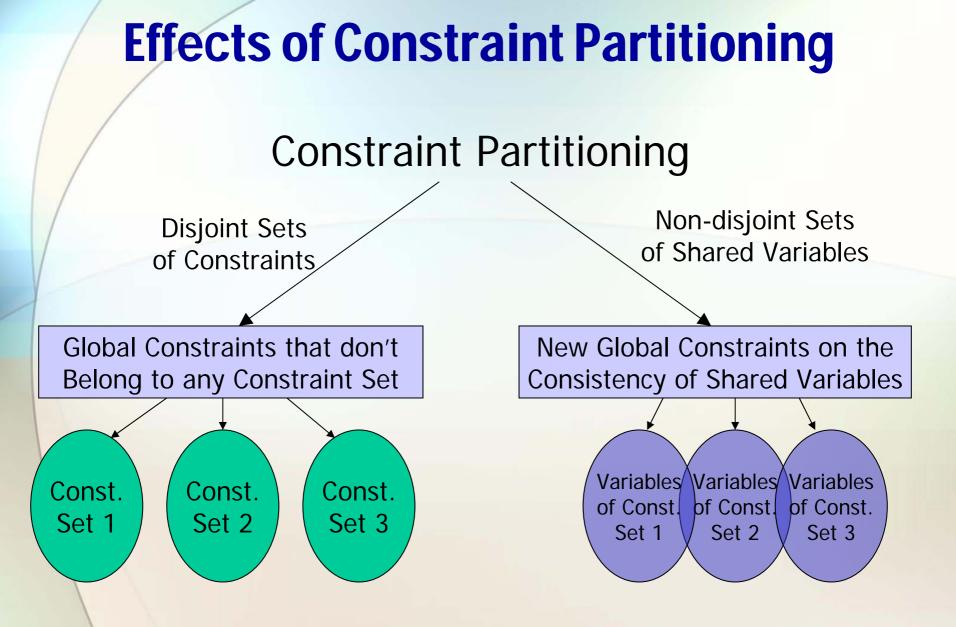
Solve P by solving all the subproblems and by resolving the inconsistent (active) global constraints

Overhead of each subproblem is exponentially smaller

Constraint Partitioning

B'

 $S_{A'} \wedge S_{P'} \wedge S_{C'} \wedge S_{C} = S_{P}$



LINOIS

Issues Addressed

- Bottom-up resolution of violated global constraints
- Automated analysis of problem structure (in some standard form) and its partitioning
- Optimality of partitioning
 Demonstration of improvements over existing methods

Previous Work: Penalty Methods General penalty formulation

 $L(variable, penalty) = objective + penalty \sum constraint violations$

•When the penalty is large enough

•Global minimum of penalty function corresponds to constrained global minimum of the original problem

Global minima of nonlinear functions are hard to find

•KKT: Local minimum of penalty function is a necessary condition for constrained local minimum

Differentiability and continuity requirements

•System of nonlinear equations that cannot be partitioned

Theory of Extended Saddle Points

- Necessary and sufficient condition of penalty formulations governing constrained local minima [AI06]
 - Loose assumptions, without continuity and differentiability of constraint functions
 - Easy to satisfy: looking for penalties that are larger than some thresholds
- Partitioning of the N&S condition into a set of necessary conditions that are sufficient collectively
 - One necessary condition for each subproblem
 - One necessary condition for the global constraints

Partition and Resolve Framework

$\begin{array}{ll} (P_t): & \min_z \ J(z) \\ & \text{subject to} \ h^{(t)}(z(t)) = 0, \quad g^{(t)}(z(t)) \leq 0 & (\text{local constraints}) \\ & \text{and} \ H(z) = 0, \qquad G(z) \leq 0 & (\text{global constraints}) \end{array}$

$$L_m(z, \gamma, \eta) \uparrow_{\gamma, \eta} \text{ to find } \gamma^{**} \text{ and } \eta^{**}$$
$$\min_{z(1)} J(z) + \gamma^T |H(z)| + \eta^T \max(0, G(z))$$
$$\text{subject to } h^{(1)}(z(1)) = 0 \text{ and } g^{(1)}(z(1)) \le 0$$
$$\bullet \bullet \bullet \qquad \min_{z(N)} J(z) + \gamma^T |H(z)| + \eta^T \max(0, G(z))$$
$$\text{subject to } h^{(N)}(z(N)) = 0 \text{ and } g^{(N)}(z(N)) \le 0$$

I ILLINOIS

Partition and Resolve Framework

Weighted active global constraints provide guidance in local subproblems

•Solving a subproblem

- •Satisfy local constraints
- •Minimize global objective
- •Minimize global constraint violations

Increasing penalties on violated global constraints

 $\min_{z(N)} J(z) + \gamma^T |H(z)| + \eta^T \max(0, G(z))$

subject to $h^{(N)}(z(N)) = 0$ and $g^{(N)}(z(N)) \leq 0$

$$(z, \gamma, \eta) \uparrow_{\gamma, \eta}$$
 to find γ^{**} and r

 $\min_{z(1)} J(z) \notin \gamma^{T} |H(z)| + \eta^{T} \max(0, G(z))$ subject to $h^{(1)}(z(1)) = 0$ and $g^{(1)}(z(1)) \le 0$

 L_{i}

Issues Addressed

- Resolution of violated global constraints
- Automated analysis of problem structure (in some standard form) and its partitioning
- Optimality of partitioning
- Demonstration of improvements over existing methods

Implementation of P&R Framework

1. procedure CPOPT

2. **call** *automated_partition()*; // automatically partition the problem //

- 3. $\gamma \leftarrow \gamma_0; \eta \leftarrow \eta_0; //$ initialize penalty values for global constraints//
- 4. **repeat** // outer loop //
 - for t = 1 to N // iterate over all N stages to solve $P_t^{(t)}$ in stage t //
- 6. apply an existing solver to solve $P_t^{(t)}$;
 - **call** update_penalty(); // update penalties of violated global constraints //
- 8. end_for;
- 9. **until** stopping condition is satisfied;
- 10. end_procedure

$$\begin{split} \min_{z(t)} & J(z) + \gamma^T a + \eta^T b \\ \text{subject to} & h^{(t)}(z(t)) = 0 \quad \text{and} \quad g^{(t)}(z(t)) \leq 0, \\ & -a \leq H(z) \leq a \quad \text{and} \quad G(z) \leq b, \end{split}$$

5.

7.

Issues Addressed

Resolution of violated global constraints

- Automated analysis of problem structure (in some standard form) and its partitioning
- Optimality of partitioning
 - Tradeoffs between the number of global constraints to be resolved and the time to evaluate a subproblem

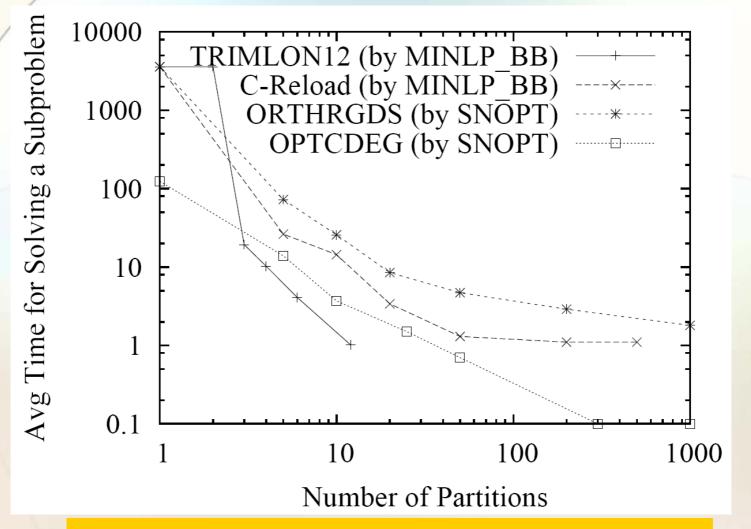
Demonstration of improvements over existing methods

Trade-offs in Constraint Partitioning

Solving Subproblems

Number of Partitions

Substantial Decrease in Subproblem Time



Substantial decrease in overhead as number of constraints in a subproblem is reduced

Constraint Optimization

NOIS

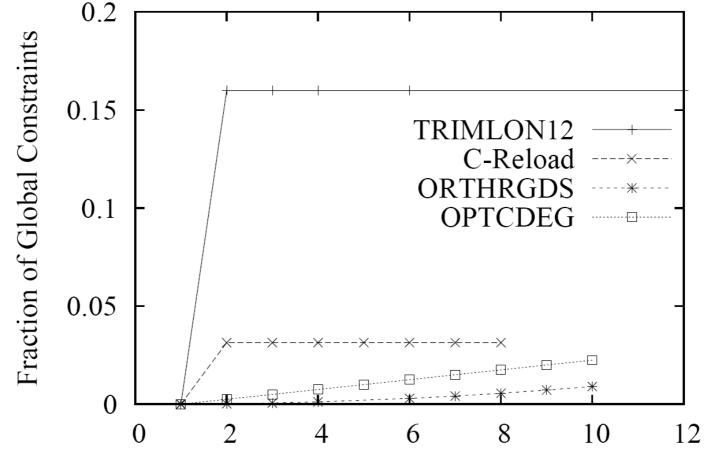
Trade-offs in Constraint Partitioning

Solving Subproblems

Resolving Global Constraints

Number of Partitions

Monotonic Increase in Global Constraints



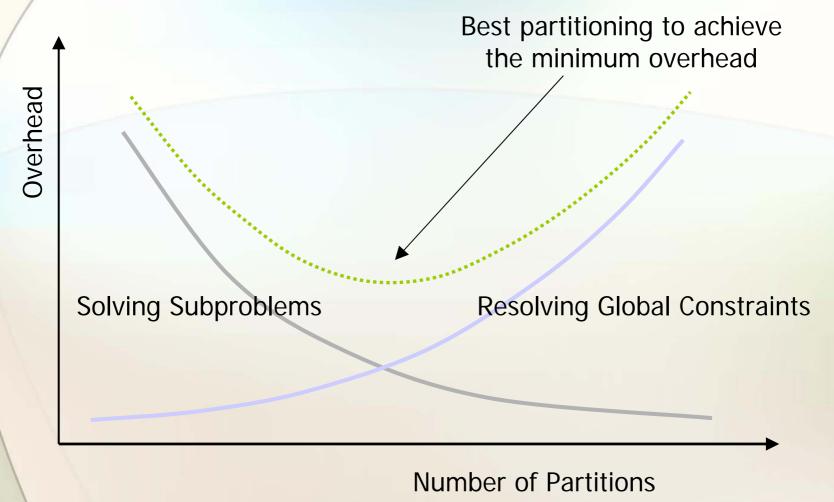
Number of Partitions

More overhead for resolving global constraints as number of partitions increases

Constraint Optimization

LINOIS

Optimal Number of Partitions



Convex relationship between no. of partitions and total time

I ILLINOIS

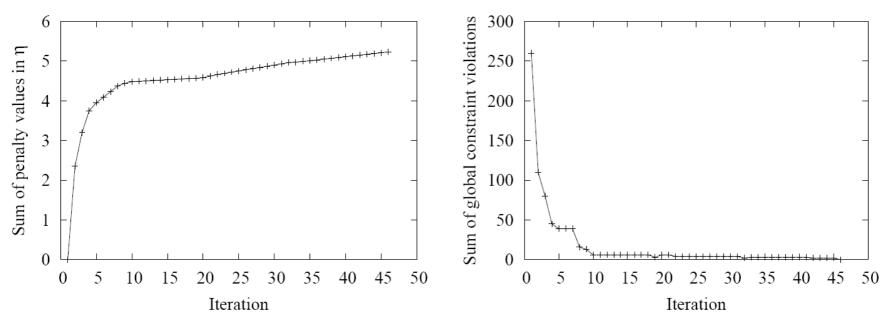
An Illustration

• Exploit convex relationship between N and total time

I otal time spent										
= 2.6 + 2.7 + 2.8 + 3	.1	Start from large N								
+ 3.3 + 8.4 + 99 = 12	21.9	Estimate time per iteration								
Assume that global constraints can be resolved quickly										
Reduce N until time per iteration increases										
Space-960-r MINLP										
Number of partitions N	1	15	30	60	120	240	480			
Time per subproblem	>3600	8.4	3.3	3.1	2.8	2.7	2.6			
Time per iteration	>3600	126	99	186	336	648	1248			
Number of iterations	1	1	$\left[1\right]$	2	2	2	5			
Total time to solve problem	>3600	126	99	372	672	1296	6240			

I ILLINOIS

Solving TRIMLON12 by CPOPT



a) Sum of penalty values in η b) Sum of global constraint violations (C5)

46 iterations to resolve all global constraints

Issues Addressed

- **Resolution of violated global constraints**
- Automated analysis of problem structure (in some standard form) and its partitioning
- Optimality of partitioning
- Demonstration of improvements over existing methods
 - Temporal planning
 - Nonlinear constrained optimization
 - Neural network learning

4th Int'l Planning Competition (2004)

- Biennial competition since 1998
- Real-world application domains
 - Airport scheduling
 - Petroleum transportation
 - Communication channel scheduling
 - Power supply restoration
 - Satellite operations
 - Mobile communications

Format of competition

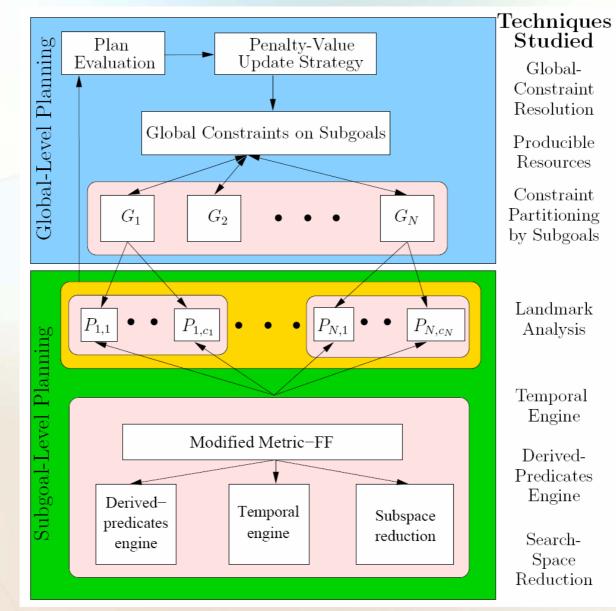
- Over a period of 8 weeks, starting March 2004
- One application (multiple domains and multiple instances) each week over 7 weeks
- Each instance limited to 1 GB memory and 30 minutes on a Linux computer
- Planner designed to run on all instances with no human intervention

Participants in the Classic Part

Heuristic search

- Macro-FF, FAP, Marvin, Crikey, TP4, Downward, SGPIan, Diagonal-Downward, Tilsapa, Optop, P-MEP, YAHSP
- Transformation methods
 - Optiplan, Petriplan, SATPLAN
- Systematic search
 - Semsyn, CPT, BFHSP
- Local search
 - LPG-TD

Architecture of SGPIan [JAIR'06]



I ILLINOIS

IPC4 Results

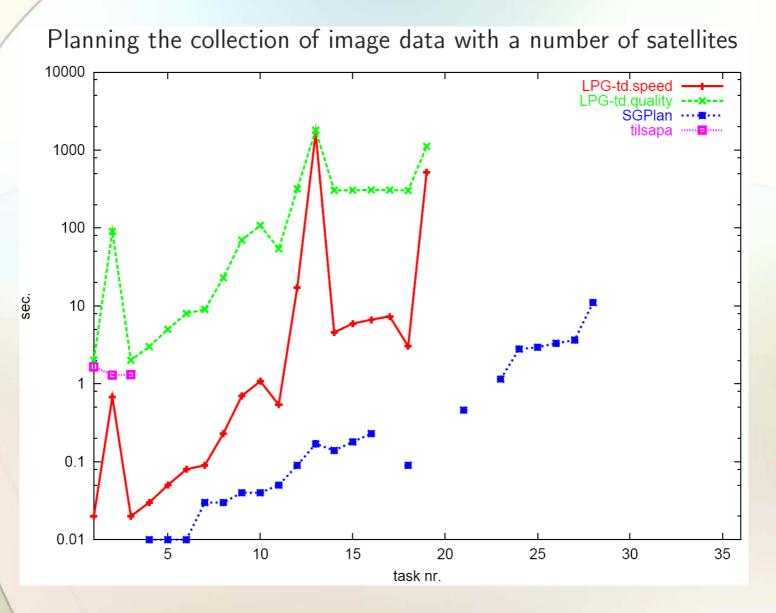
SGPIan was the only planner that won in two tracks

- Suboptimal Temporal Metric Track: 1st Prize
- Suboptimal Propositional Track: 2nd Prize
- Optimal Track: did not participate

Domain	Total	SGPlan	LPG	Downward	Macro-FF	YAHSP	Crikey
Airport	200	155	134	50	21	36	64
Pipesworld	260	166	113	60	62	93	111
Promela	272	167	83	83	38	42	13
PSR	200	122	99	131	32	48	29
Satellite	288	207	157	36	36	-	_
Settlers	20	19	13	-	-	-	_
UMTS	300	274	200	-	-	-	_
Overall	1540	1110	799	360	189	219	217

I ILLINOIS

IPC4 Results: SATELLITE Domain



I ILLINOIS

Difficult-to-Solve MINLP [CP'05]

ID	n_c	n_v	Quality	Time	Quality	Time	Quality	Time
MINLP Test	MINLP Test Problem		MINLP_BB		BARON		CPOPT(MINLP_BB)	
C-RELOAD-q-49	1430	3733	_		—	_	(-1.13)	69.45
C-RELOAD-q-104	3338	13936	_	_	_	_	-1.14	353.74
Ex12.6.3	57	92	19.6	23	19.6	423.1	19.6	13.43
Ex12.6.4	57	88	8.6	70	8.6	478.2	8.6	2.94
Ex12.6.5	76	130	15.1	4	10.3	845.5	10.6	3.33
Ex12.6.6	97	180	16.3	18	16.3	937.4	16.3	149.40
PUMP	34	24	_	—	131124	977	130788	84.53
SPACE-960-i	6497	5537	_	—	—	—	7.65E6	187.43
SPACE-960-ir	3617	2657	_	—	_	_	(7.64E6)	145.76
SPACE-960	8417	15137	_	—	_	_	(7.84E6)	1206.43
SPACE-960-r	5537	12257	-	—	—	—	5.13E6	160.45
STOCKCYCLE	97	480	_	—	436341	n/a	119948.7	6.45
TRIMLON4	24	24	12.2	10	8.3	11.0	8.3	2.73
TRIMLON5	30	35	12.5	14	10.3	55.3	10.3	24.5
TRIMLON6	36	48	18.8	19	15.6	1092.9	15.6	15.94
TRIMLON7	42	63	-	—	17.5	990.7	18.1	65.34
TRIMLON12	72	168	-	—	_	_	95.5	345.50
TRIMLOSS4	64	105	10.8	99	_	_	10.6	9.76
TRIMLOSS5	90	161	12.6	190	—	—	10.7	76.85
TRIMLOSS6	120	215	-	—	_	_	22.1	69.03
TRIMLOSS7	154	345	-	—	_	_	26.7	59.32
TRIMLOSS12	384	800	_	_	_	_	138.8	323.94

I ILLINOIS

Difficult-to-Solve NLP [CP'05]

CNLP Test Problem		Lancelot		SNOPT		CPOPT(SNOPT)		
CATENARY	166	501	-	-	-	-	(-1.35E5)	245.64
DTOC6	5000	10001	-	-	-	-	(1.02E6)	58.05
EIGMAXB	101	101	0.91	1.34	-	-	1.87	24.33
GILBERT	1000	1000	2459.46	1.12	4700.61	689.18	2454.67	39.55
HADAMARD	256	129	-	-	-	-	0.99	7.88
KISSING	903	127	0.84	123.43	-	-	0.77	73.45
OPTCDEG	4000	6001	-	-	45.76	10.23	46.98	19.65
ORTHREGC	5000	10005	-	-	3469.05	557.98	2614.34	143.65
ORTHREGD	5000	10003	-	-	8729.64	208.27	7932.92	123.49
ORTHRGDM	5000	10003	[1513.80]	4.56	10167.82	250.00	2340.34	20.34
ORTHRGDS	5000	10003	912.41	4.20	-	-	894.65	105.34
VANDERM1	199	100	-	-	-	-	0.0	45.34
VANDERM3	199	100	-	-	-	-	0.0	36.70
VANDERM4	199	100	-	-	-	-	0.0	52.33

Conclusions

 Constraint partitioning is a powerful approach for exploiting constraint structure in order to reduce complexity

- Bottom-up resolution with guidance provided by top-level active global constraints
- Using existing solvers to solve partitioned subproblems
- Hierarchical partitioning is critical

Acknowledgments

- Y. X. Chen, Washington University, St. Louis
- C. W. Hsu, U. of Illinois, Urbana-Champaign
- S. M. Lee, U. of Illinois, Urbana-Champaign
- M. Richards, U. of Illinois, Urbana-Champaign
- Y. Shang, U. of Missouri, Columbia
- T. Wang, Synopsis
- Z. Wu, Oracle