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Signal Classification
The concept of signal classification can be depicted as follows:
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Examples of Features in Signal Classification

From daily life to high-tech systems, signal classification is a common problem.

Examples:

Table 1: Classification Examples

System Signal Classification Feature

Sonar Sonar array Vessel class Signal power spectrum

Medical exam 1 Stethoscope Heart normal? Heartbeat regularity

Medical exam 2 EEG Sleep state Signal power spectrum

Weather Visual observation Rain or dry Colour of clouds

Family Voice message My wife annoyed? Tone, choice of words
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Power Spectral Density (PSD) as a Feature
It is not surprising that PSD is very often used as a feature for signal classification in

engineering since many objects distinguish from each other by having different power in

different frequency ranges which is what the PSD displays. PSD is also easily measurable

and observable.

Example: Multi-sensor Sonar Signal Power Spectrum

Signature spectral lines of a vessel from different sonar sensors

K.M. Wong - Department of Electrical and Computer Engineering 3



McMaster University

PSD as a Feature (contd.)

Example: EEG Signal Power Spectrum
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• Depending on where in the frequency domain the power of the EEG signal is located,

the clinical staff decides on the state of the patient’s brain.

In both examples of sonar and EEG signal classifications, even though multi-sensor measurements of the signals is employed,
strangely, the cross-power spectral density functions between sensors have generally not been utilized!!
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Extraction of PSD from Multi-channel Measurements
We have M channels of recording of the same signal measured by M different sensors.

We extract the PSD matrices of different epochs of the measured signals as follows:

1. Clean up (noise filtering and artifact removal) the received signal.

2. Divide the cleaned M -channel signal into epochs, each representing a wide-sense

stationary signal.

3. For the nth epoch, the M -channel data at different instants t form an M × T matrix

S′
n = [s′n(0), · · · , s′n(T − 1)], n = 1, · · · , N

which is then normalized by its Frobenius norm giving the nth epoch normalized data

matrix Sn = S′
n/‖S′

n‖F .

4. Form the vector of the nth epoch s̃n = vec (Sn) with mean µ̃n = E[̃sn] so that

its covariance matrix is R̃n = E[(s̃n − µ̃n)(s̃n − µ̃n)
T ] which is MT × MT and

contains the M × M matrices Rn(τ), τ = 0, · · · , T − 1.

5. At any frequency ω, the power spectral density (PSD) matrix of the nth epoch signal

is then the DFT§

Pn(ω) =
∑

τ e−jωτRn(τ)

§ The Nuthall-Strand algorithm is usually used to obtain Pn(ω).
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Signal Classification in the Feature Space of PSD

! P

PSD Feature Space

Class A

Class B

• Signal classification by PSD usually involves the comparison of the observed PSD, P,

with a library of collected PSD of different classes.

• The comparison is by examining to which class is the observed PSD “closer”.

• The question is: Closer to which part of the classes?
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Classification Methods
There are various ways of defining the measurement point of a group. Only mention two

here:

1. Mean of Class

• One of the most intuitive strategies and is commonly used.

• Examine and compare the distances between the observed PSD to the means of the

different classes.
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Classification Methods (contd.)

2. k-Nearest Neighbour (kNN)
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• Here, we examine the distance of the observed PSD from the members of the

different classes in the library.

• We then choose the k members which are the closest to the observed PSD.

• Out of the k closest members, we use the majority rule to decide to which class

does the observed PSD belong.

K.M. Wong - Department of Electrical and Computer Engineering 8



McMaster University

Distance – An Essential Concept for Classification

Whichever method is used for PSD classification, the concept of distance is essential!

The shorter is the distance from each other, the more similar are the features.

• A distance is a real number associated with a pair of points x and y. Such a real

measure, d : {x, y} → R, is called a metric if it posses the following properties:

d(x, y) ≥ 0; d(x, y) = 0 iff x = y (positivity)

d(x, y) = d(y, x) (symmetry)

d(x, z) ≤ d(x, y) + d(y, z) (triangular inequality)







(1)

• In a signal space in which the elements are represented as n-dimensional vectors, the

distance measure depends on the definition of the norm (size) of the vector. The most

commonly used is the inner-product (Euclidean) norm,

‖x‖ =
√

〈x, x〉 =

(

n
∑

i=1

|xi|
2

)1/2
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The Euclidean Distance

The distance induced by the inner-product norm is called the Euclidean distance,

dE(x, y) = ‖x − y‖ =
√

〈(x − y), (x − y)〉 =

(

n
∑

i=1

|xi − yi|
2

)1/2

(2)

y

x  y

x

The Euclidean distance coincides with the usual concept of distance in a 3-dimensional

space. It also represents many important physical quantities (MSE, energy difference, etc.)
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Euclidean Distance for Matrices

• An M × M matrix can be looked upon as an element in the M2 signal space so that

the same idea of distance between two such matrices A = [aij] and B = [bij] can

also be applied:

dFo(A, B) =





M
∑

i=1

M
∑

j=1

|aij − bij|
2





1/2

=
√

tr[(A − B)(A − B)H] (3)

which is sometimes called the Frobenius distance.

• The Frobenius distance is in fact induced by the inner product norm. Thus, the

Frobenius distance can be considered as the Euclidean distance between A and B since

dFo(A, B) =
√

〈(vec A − vec B), (vec A − vec B)〉 = dE(vec A, vec B)

• Similar to the practice in applying the Euclidean distance, we can also weight the

Frobenius distance by a positive definite matrix W to enhance certain parts of the

feature matrices:

dWFo(A, B) =
√

tr[(A − B)W(A − B)H] (4)
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Euclidean Distance for PSD Matrices – Difficulties

PSD matrices are not freely structured, but are: 1) Hermitian and 2) Positive definite.

Therefore, they are not just any point in the M2-dimensional signal space, rather they

form a manifold in the signal space. Thus, when we consider the distance between two

PSD matrices, we should measure along the surface of the manifold. This concept is akin

to finding the distance between two cities:

The Euclidean distance between two cities is neither informative nor accurate.
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Distance Measure on the PSD Matrix Manifold M

A path between

frequency
two PSDs at same
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iωP(      )

P (     )

i

n ωmin

• Let the manifold described by all the feature PSD matrices be M, ∴ any point on M

is denoted by P.

• At different frequencies ω ∈ [ωmin, ωmax], two PSD matrices of the mth and nth

epochs describe two sequences of points (two separate curves) on M denoted by

Pm(ω) and Pn(ω) respectively (see Figure).

• We need to establish a distance which measures along the manifold of M between the

two points Pm(ωi) and Pn(ωi), (or simply, Pm and Pn for short), on the two curves

at the same frequency.
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Some Basic Concepts of a Riemannian Manifold¶

Pm

Pn

• For a smooth path P(θ) on M linking the two points Pm and Pn parameterized by

θ, the length (real and positive) of the path between the two points is then given by

ℓ(P) =

∫ θn

θm

√

g(Ṗ(θ)) dθ,
(

Ṗ , dP/dθ
)

• g(Ṗ(θ)) is called a Riemannian metric.

• A differentiable manifold M in which a Riemannian metric is defined is called a

Riemannian manifold.
• The curve on the Riemannian manifold linking Pm and Pn having the minimum length

is called a geodesic, and the length of the geodesic is called the Riemannian distance

between the two points, i.e.,

dR(Pm, Pn) , min
P(θ):[θ1,θ2]→M

{ℓ(P(θ))}

¶ After the great German mathematician Bernhard Riemann (1826-1866)
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The Manifold M and its Associated Euclidean Spaces
To obtain the Riemannian distance on M, we must study the relationship between the

manifold and the Euclidean spaces associated with it:

• Any P can be decomposed (not uniquely) as P = P̃P̃H where P̃ has no structural

constraint, and is an M × M complex matrix in a Euclidean space H. P is thus an

“image” on M of the points P̃ in H. M and H are called the base space and the

total space.

• The elements in M and H are related by P = P̃P̃H . This mapping links each point

P ∈ M with points P̃ ∈ H, and this “link” is called the fibre above P. Any point P̃

along a fibre satisfies the mapping. A collection of these links is called a fibre bundle.

• The tangent space TH(P̃) at P̃ in H is the collection of vectors tangent to any smooth

curve passing through P̃, and can be resolved into its horizontal and vertical subspaces

UH(P̃) and VH(P̃) respectively, i.e., TH(P̃) = UH(P̃) ⊕ VH(P̃).

• H, TH, UH, and VH are Euclidean spaces, thus the Euclidean (Frobenius) norm of

vectors applies making the distance measure to be:

dE(X̃, Ỹ) = ‖X̃ − Ỹ‖ =

√

tr(X̃H − ỸH)(X̃ − Ỹ)
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M and its Associated Euclidean Spaces (contd.)

• Consider a smooth curve P(θ) on M with end points Pm = P(θm) and Pn = P(θn).

• A lift of the curve P(θ) is a curve P̃(θ) in H along the fibres above P.

• A horizontal lift of the curve P(θ) on M is a curve P̃(θ) for which the tangent vector
˙̃
Pi always lies in the horizontal subspace UH(P̃) of the tangent space TH(P̃) at each

point P̃i along P̃(θ).

• The concept of the horizontal lift of a PSD matrix is illustrated in the following figure.
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Developing a Riemannian Distance on M

Lemma 1. Let P = P̃P̃H; P̃ ∈ H, P ∈ M. If we choose the Riemannian metric on

M to be g(Ṗ) = 1
2trṖK, where Ṗ ∈ TM(P), and K is a Hermitian matrix such that

KP + PK = Ṗ, then TM(P) and UH(P̃) are isometric. 2

• By Lemma 1, if we use the particular Riemannian metric, then the tangent space

TM(P) of M and the horizontal subspace UH(P̃) of H are isometric. Thus, by lifting

a curve between two points in M horizontally to U , the measurement between the two

points on M can be obtained from the corresponding measurement in U .

• Hence, P̃(θ) being a horizontal lift of P(θ), P(θ) is a geodesic (path of minimum

length) between P(θm) and P(θn) in M iff P̃(θ) is a geodesic between P̃(θm) and

P̃(θn).

• Now, P̃m and P̃n along the two fibres above P(θm) and P(θn) are in a Euclidean

space, thus the distance between them is a straight line, the length of which is given

by ‖P̃m − P̃n‖.
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Developing a Riemannian Distance on M (contd.)

• If P(θ) is a geodesic (minimum-length path) between P(θm) and P(θn) in M, then

its length must be equal to the length of the shortest straight line joining the two points

P̃(θm) and P̃(θn) in H, which, for Pm = P̃mP̃H
m and Pn = P̃nP̃

H
n , is given by

min
P̃

ℓ(P̃) = min ‖P̃m − P̃n‖ = min
[

tr
{

(P̃m − P̃n)(P̃m − P̃n)
H
}]1/2

• Substituting P̃m = P1/2
m Um and P̃n = P1/2

n Un with Um and Un being unitary

matrices, the Riemannian distance between Pm and Pn on the manifold M is

dR(Pm, Pn) = min
Um,Un

[

trPm + trPn − 2ℜ
{

tr
(

UnU
H
mP

1/2
m P

1/2
n

)}]1/2

• Now♮, maxUm,Un ℜ
[

tr(UnU
H
mP1/2

m P1/2
n )

]

= tr
[

(P1/2
m PnP

1/2
m )1/2

]

if Un and Um

are chosen as the left and right singular vector matrices♯ of (P1/2
n P1/2

m ).

♮R.A. Horn and C.R. Johnson, Matrix Analysis, Cambridge University Press, 1990.

♯ SVD: VH
ℓ AVr =

[

Σ 0

0 0

]

; A is m × n, Vℓ, Vr are m × m and n × n unitary, Σ is diagonal.
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A Riemannian Distance on M (contd.)

• Theorem 1. For Pm, Pn ∈ M, the Riemannian distance§ between Pm and Pn is:

dR(Pm, Pn) =

√

trPm + trPn − 2tr
[

(P
1/2
m PnP

1/2
m )1/2

]

(5)

if P = P̃P̃H , and the Riemannian metric is chosen as in Lemma 1. 2

• As in the case of Euclidean distance, we often weight the features to enhance their

similarity/dissimilarity. This results in the following weighted distance:

Corollary 1. Let W be a positive definite Hermitian matrix. Then the weighted

Riemannian distance§ between Pm and Pn ∈ M is given by

dRW(Pm, Pn) =

√

tr(WPm) + tr(WPn) − 2tr
[

(P
1/2
n WPmWP1/2

n )1/2
]

(6)

if P = P̃P̃H , and the chosen Riemannian metric is as in Lemma 1. 2

• For the complete range of frequency, the distance between two curves is

d(Pm(ω), Pn(ω)) =
∑

i

dR(W )(Pm(ωi), Pn(ωi)) (7)

§We have obtained closed forms for both dR and dRW which can be shown to satisfy the properties of a distance in Eq. (1).
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Optimum Weighting for the Riemannian Distance
The purpose of having a weighted distance is to highlight certain parts of the feature

and deemphasize other parts in order to enhance the efficiency of application. When

applied to signal classification, our aim is to find the optimum weighting matrix which

minimizes the distances between similar feature data while keeping the dissimilar members

at a prescribed distance.

• We say that Pm(ω) and Pn(ω) are similar if they belong to the same class, and are

dissimilar if they belong to different classes. Let

As = {(Pm, Pn); Pm(ω), Pn(ω) ∈ Cℓ ∀ω} — the set of similar PSD matrix pairs

Ad = {(Pm, Pn); Pm(ω) ∈ Cℓm, Pn(ω) ∈ Cℓn, ℓm 6= ℓn ∀ω} — the set of pairs

of dissimilar PSD matrices.

• The optimum M × M weighting matrix W may be found by maximizing the ratio of

the sum of squared interclass distances and the sum of squared intraclass distances,

max
W

∑

(Pmk,Pnk)∈Ad
d2

RW(Pmk, Pnk)
∑

(Pmk,Pnk)∈As
d2

RW(Pmk, Pnk)
s.t. W = W

H ≻ 0 (8)

• Optimization of the quantity in Eq. (8) directly on the manifold M is difficult because

of the relatively complicated expression of dRW .
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Optimum Weighting Matrix (contd.)

• However, TM(P) is isometric with UH(P̃)

⇒ we can perform the optimization in UH(P̃) using the inner product metric.

• LetW=ΩΩH whereΩ is M×K, K <M . Isometry ofTM(P) andUH(P̃)means

d2
RW(Pm, Pn) = tr[ΩH(P̃m − P̃n)(P̃m − P̃n)

HΩ]

• Then, from our library, we gather all the similar P̃ matrices in one group and the

dissimilar P̃ matrices in another and evaluate their mean difference matrices, i.e.,

M̃As =
∑

(P̃m,P̃n)∈As
(P̃m − P̃n)(P̃m − P̃n)

H and

M̃Ad
=
∑

(P̃m,P̃n)∈Ad
(P̃m − P̃n)(P̃m − P̃n)

H .

• The optimization problem (8) becomes

maxΩ

tr(ΩHM̃Ad
Ω)

tr(ΩHM̃AsΩ)
≈ maxΩ tr

[

ΩHM̃Ad
Ω
]

, s.t. (ΩHM̃AsΩ) = IK

• The well-known solution is Ωop = [v1 · · · vK] where v1, · · · , vK are the

eigenvectors† corresponding to the K largest eigenvalues λ1 ≥ · · · ≥ λK of

M̃−1
As

M̃Ad
. Thus, Wop = ΩopΩ

H
op = [v1 · · · vK][v1 · · · vK]H .

†
H. Lütkepohl, Handbook of Matrices, John Wiley and Sons, 1996. {v1, · · · . vK} are not necessarily orthonormal.
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Sleep State Classification using EEG Signals
• EEG (electroencephalogram) is a valuable measure of the brain’s electrical function

and has been employed in many clinical areas such as administration of anaesthetics,

detection and prediction of epileptic seizures, recognition of concussion, analysis of

depression, etc. Here, we employ the EEG measurements to determine the depth of

natural sleep (no anaesthetics) of a patient.

• The study of sleep is important in health care since sleep disorders affect the well-being

of many individuals. The states of sleep are classified as shown in the following table†:

Rechtschaffen & Kales Sleep Classification US Govt. Health Services 1968

Sleep Stage Main Frequency Range Wave Patterns

Awake (relaxed) 8 − 12Hz or higher α, β, or γ

REM > 12Hz β

Non-REM 1 4 − 8Hz α, θ

Non-REM 2 4 − 15Hz θ, spindles, K-complexes

Non-REM 3 2 − 4Hz δ, θ

Non-REM 4 0.5 − 2Hz δ, θ

†δ, θ, α, β, γ corresponds to 0.5−4Hz, 4−8Hz, 8−12Hz, 12−30Hz, above 30Hz. A sleep spindle is a burst of 12−16 Hz
waves that occur for 0.5−1.5 sec., and a K-complex is a brief positive and negative spikes that occurs every 1.0 − 1.7 min.
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Sleep State Classification using EEG Signals (contd.)

• Collection of EEG data for the analysis of sleep requires putting the patient in a

laboratory to acquire up to 8 hours of multiple channels of EEG recordings‡.
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The 10-20 electrode placement system (only C3,C4,O1,O2 are needed for sleep analysis)

• The collected EEG signals is divided into epochs of 30 sec each and analysis is usually

carried out by a trained clinical expert visually to determine the stage of sleep. The

judgement of the expert is usually based on the amplitude and frequency of the signal

fluctuation (equivalent to power at different frequencies)§.
‡There may be recordings of other physiological data used for determination of sleep state such as EMG, ECG, oxygen
concentration in arterial blood, and breathing rate. Here, we only focus our attention on the use of EEG signals.
§This is a labour-intensive classification process, and its inter-rater reliability between two expert judges is typically around 77%.
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Analytic Approaches to Sleep State Classification

• Many researchers have proposed sleep stage classification using analytic approaches:

– Establish an AR model for the single-channel signals in each sleep state and determine

their spectral properties using the DFT.

– Employ the multi-channel EEG data to determine cross-correlation of the signals of

different channels and evaluate the PSD of the different sleep-state data.

– The suggested analytic methods propose the second order statistics (correlation,

power spectrum, cross PSD) of the EEG data as the feature for sleep state

determination is similar ro the judgments of the clinical experts being based mainly

on the power distribution of the signal.

• However, for the measure of similarity/dissimilarity of the features, all these analytic

methods employ the Euclidean distance, and all approaches have only limited success

rate – in the range of 70% to 80% agreement with those of the experts.

• At present, the most common practice is still to have the EEG signals determined by

the visual judgment of clinical experts on the EEG signals!
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Sleep State Classification using Riemannian Distance

To test how effective is our proposed measure of Riemannian distance on EEG signal

classification, we carried out experiments as follows:

1. Record several hours of 4-channel EEG data from different patients.

2. Remove artifacts and LP filter (cut-off30Hz). Divide cleaned data into 30-sec “epochs”

and normalize.

3. Pass epochs to clinical experts for sleep classification∗.

4. Construct PSD matrix for each categorized epoch (N-S algorithm) at different

frequencies. Using PSD matrices in all similar and dissimilar classes, calculate the

optimum weighting matrix for the Riemannian distance.

5. For each trial, randomly choose one feature matrix from a state as the test signal.

calculate the R-distances of the test signal from the library sets. Classify test signal

according to the k-nearest neighbour algorithm.

6. Repeat trial Q times (Q-fold cross-validation), each time selecting a different test

feature curve in a class. Record the number of correct classification for each state.

∗We collected 75 epochs for each sleep state (450 epochs altogether). Since the true state of sleep measured from the signal
epoch is not known, we therefore treat the library of signal epochs classified by clinical experts as the ground truth.
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Classification of EEG Signals – Test Results

Example 1.

• We examine the performance of our classification algorithm using the unweighted and

weighted Riemannian distances and observe the effect of optimum weighting on the

accuracy of classification.

• For a selected PSD curve chosen from a particular class, we carry out our experiments

using the parameter k = 1, 3, 5, and 7 for the nearest neighbour tests.

• Each test is repeated Q = 75 times using both weighted and unweighted Riemannian

distances. The following figure shows the averaged results of the tests.

• It can be observed that having k = 5 as the number of nearest neighbours yields the

best results for both distance measures.
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Test Results – Example 1 (contd.)

• With the weighted Riemannian distance, the accuracy of classification ranges from

about 94% for Stage 4 on Non-REM to over 99% for Stage 1 of Non-REM and REM.

• It is also clear that the optimum weighting improves the performance of the Riemannian

distance by a margin of 8 to 12% in the accuracy of sleep state classification.
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Comparison of Various Distances – Test Results

Example 2. We now compare the EEG classification performance using different distance

measures. Included in the performance comparison with the unweighted and weighted

Riemannian distances are the following commonly used measures:

a) Euclidean distances — For EEG classification, many researchers choose a vector quantity

(such as the coefficients of the Fourier transform, or of the wavelet transform, etc.) of

the single-channel♮ EEG signal as the signal feature. The multi-channel PSD matrix

provides extra information on the cross-power between channels. Here we will maintain

the use of the multi-channel PSD matrix as the signal feature, and endowed it with the

optimally♯ weighted or unweighted Euclidean (Frobenius) distance♭ as shown before.

♮For non-parametric processing of stationary signals, the different choices generally yield similar accuracies in EEG classification
since these coefficients contain essentially the same information on the single-channel signal. For multi-channel measurements,
the procedure usually involves the averaging of the chosen coefficients over the different channels.

♯Xing et als. Neural Inf. Proc. Sys., 2003. Several variations of the same idea of optimal weighting for similarity of vector features
exist in the literature. The performance of these differently optimized weighted distances however, are very similar in our tests.

♭There are other ways of writing a PSD matrix as a vector quantity such as writing it as a linear combination of the eigenvectors
of P (Karhunen-Loéve expansion). However, most representations yield similar accuracies in EEG classification.
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Test Results – Example 2 (con’t)

b) Kullback-Leibler (KL) “distance” – The K-L divergence was developed to measure

the similarity between random variables of different distributions. For two zero-mean

Gaussian random vectors, the KL divergence becomes a similarity measure between the

two covariance matrices given by

dKL(R1, R2) =
√

1
2 tr(R1R

−1
2 + R−1

1 R2 − 2I)

The KL “distance” is invariant to weighting and does not satisfy the triangular inequality.

Since it is a measure between the covariance matrices, the Fourier transforms of which

are the feature PSD matrices, it has been applied to the classification of EEG signals.

We now apply the k-nearest neighbour algorithm to validate the EEG classification using

all the above distance measures. In all cases, we choose Q = 75. We only show the

performance comparison for k = 3 and 5 since these appear to yield the best results

among all our tests. Again, each test follows the same procedure as outlined in Example 1,

and the performance of the classification using different distance measures is evaluated.
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Test Results – Example 2 (contd.)
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Performance of various methods for: a) k = 3, b) k = 5

• Using the unweighted Euclidean distance dE yields the worst performance by far, having

accuracies between 50% to 60% only in both cases of k = 3 and k = 5.
• Optimum weighting improves the performance of the Euc. distance by approx. 15%.
• In the Awake, REM, and Stage 1 categories, the KL distance performs with accuracies

at around 85% to 90%. matching that of the unweighted Riemannian distance, but

markedly deteriorates in the deeper sleeping stages of 2, 3, and 4.
• The weighted Riemannian distance yields a performance superior to all, being 8 to 15%

higher in accuracy over the closest competitor (the unweighted Riemannian distance).
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Conclusions
• We study the problem of signal classification employing PSD as the feature.

• We examine the use of the Euclidean distance as a measure of similarity between

PSD matrices and reason that it may not be a suitable measure since PSD describe a

manifold in the signal space.

• We strongly suggest that, for PSD matrices, the measure of similarity should be the

distance measured along the surface of the manifold — i.e., the Riemannian distance.

• We examine the geometry of the PSD manifold which has a measure of Riemannian

distance and its associated total space which has a measure of Euclidean distance. We

established isometry between the tangent space of the PSD manifold and the horizontal

component of the total space tangent.

• From this, we obtained a Riemannian distance measure for the manifold, and we further

developed an optimum weighting for the Riemannian distance for signal classification.

• Our objective here is not to compare classification methods be it the measurement from

the mean or the k-NN measurement; neither is it our purpose to compare different

optimum weightings. Our purpose here is to show that the employment of this new

measure of Riemannian distance yields the advantage of superior accuracies in the

application to signal classification by PSD over the conventional distance measures.
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Thank you!
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