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The situation

e The world is analog
e Computation is digital

e How to go between these representations?

Analog . e, Analog
World Processing - World

Ex: Audio, sensing, imaging, computer graphics, simulation etc
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The Question:

You are given a class of objects, like a class of functions (bandlimited)
You have a sampling device, as usual to acquire the real world

— Smoothing kernel or lowpass filter

— Regular, uniform sampling

— That s, the workhorse of sampling!

sampling kernel

Obvious question:
When does a minimum number of samples uniquely specify the function?

x(t) < Yn
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Kernel and sampling rate

About the observation kernel:

Given by nature

— Diffusion equation, Green function
Ex: sensor networks

Given by the set up

— Designed by somebody else, it is out there
Ex: Hubble telescope

Given by design
— Pick the best kernel
Ex: engineered systems, but constraints

About the sampling rate:

Given by problem
— Ex: sensor networks
Given by design

— Usually, as low as possible
Ex: digital UWB




A Variation: Compressed Sensing

Finite dimensional problem: K sparse vector in N dimensional space
e x:Inputin RN but only K non zero elements

y: Output in RM, where M < N

F: Frame sensing matrix M by N

Ill posed inverse problem....

Key: K<M << N

L1 Measurement
-
Questions

e Can this be inverted

e What sizes K, M, N are possible
e What if approximate sparsity

e What algorithms

Problem is non-linear in the location of non-zero entries of x!

T
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Variation: Multichannel Sampling

Signal is observed in K different channels
Sampling rate can be diminished by at most K
Shifts, however, are unknown
Some redundancy needed to find the unknown shifts

Problem is non-linear in the shifts!
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Are these real problems? (1)

Google Street view as a popular example
How many images per second to reconstruct the real world

What resolution images to give a precise view of the world
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Plenoptic sampling

Epipolar geometry
Points map to lines

Approximate sampling theorem

0!

epipolar image

10



LYTECHNIQUE
E DE LAUSANNE

When there are problems....

Rolex Learning Center at EPFL

SANAA Architects ( Kazuyo Sejima, Ryue Nishizawa)




il |

'COLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Are these real problems?

Google maps as another popular example
How to register images

What resolution images to give an adequate view of the world

12
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Super-resolution

Actual acquisition with a digital camera (Nikon D70)

[Dragotti et al, 2008]



il |

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Are these real problems?

Sensor networks as another relevant example

How many sensors

How to reconstruct

November 13th 2006
Air Temperature Kriging
5h00 pm local time

Air Temperature [°C]

P High : 8.00
Il Low : 6.00

batimentssS

14




il |

'COLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Diffusion equation and inversion

Point sources .
Observation by sensors = e
PN
u - "
.;- -
e AT
" ST
L N
(i
5 - o
) O — . ._,j
Over space Over time
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Classic Sampling Case [WNKWRGSS, 1915-1949]

If a function x(t) contains no frequencies higher than W cps, it is completely
determined by giving its ordinates at a series of points spaced 1/(2W) seconds apart.
[if approx. T long, W wide, 2TW numbers specify the function]

It is a representation theorem: = _ t—nl
— sinc(t-n) is an orthogonal basis for BL[-7, 7] r(t) = Z x|n]sinc
—  X(t) € BL[-mt,mt] can be written as n=—00 5

Sinc Kernel
1

0.8}
0.6
0.4r

0.2r

g e

0. 1 1 1 1 1
-20 -10 0 10 20 30

Note: Time (sec)
— ... Slow convergence of the series

x(t) ——> iL o) _)r— —x[11]

— Shannon-BW, BL sufficient, not necessary

17



LYTECHNIQUE
E DE LAUSANNE

Shannon’s Theorem... a bit of History

Whittaker 1915
Nyquist 1928
Kotelnikov 1933
Whittaker 1935
Raabe 1938

Gabor 1946
Shannon 1948
Isao Someya 1949

18
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Shannon’s Theorem: Variations on the subspace theme

Non uniform
— Kadec 1/4 theorem
Derivative sampling

— Sample signal and derivative...
... at half the rate

Stochastic
— Power spectrum is good enough
Shift-invariant subspaces

— Generalize from sinc to other
shift-invariant Riesz bases
(ortho. and biorthogonal)

— Structurally, it is the same thing!
Multichannel sampling
— Known shift: easy

— Unknown shift: interesting
(superresolution imaging)
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Microphone and loudspeaker arrays
The plenacoustic function
A sampling theorem for wave fields

4. Sampling: The non-linear case
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Sampling and interpolating acoustic fields

Wave fields governed by the wave equation
— Space-time distribution
— Constrained by wave equation
— Not arbitrary, but smoothed

What can we say about sampling/interpolation?
— Spatio-temporal Nyquist rate
— Perfect reconstruction
— Aliasing
— Space-time processing

Anal Space-time
halog Wave equation » acoustic
sources g .
wave field

How do we sample and interpolate? »
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Many microphones and loudspeakers

Multiple microphones/loudspeakers

— physical world (e.g. free field, room)

— distributed signal acquisition of sound with “many” microphones

— sound rendering with many loudspeakers (wavefield synthesis)
This is for real!

— sound recording

— special effects

— movie theaters (wavefield synthesis)

— MP3 surround etc

il
ARG TR )

Y
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The plenacoustic function and its sampling

Setup
Questions:

Sample with “few” microphones and hear any location?

Solve the wave equation? In general, it is much simpler to sample the

plenacoustic function

Dual question also of interest for synthesis (moving sources)
Implication on acoustic localization problems

Application for acoustic cancellation

23
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The plenacoustic function and its sampling

PAF in free field and in a room for a given point source

[4b]
=]
2 1 [ o
E.o.mi-- : S |
Zooz ?ELO.OJ. )
. N\ <L R -
0015 - 2
2 002 :
001 | 0015
i 0 005} T 0 . 0.01 , > Positi
Time [s] ™ A Positions [m] Time[s] o005 - ositions [m]
-2 - 2

e We plot: p(x,t), that is, the spatio-temporal impulse response
e The key question for sampling is: P(¢,w) that is, the Fourier transform

e A precise characterization of P(¢,w) for large qﬁ and (o will allow
sampling and reconstruction error analysis

24



slope: w = ¢c ¢

% o: temporal frequency

------------ ®: spatial frequency

Thus: Spatio-temporal soundfield
can be reconstructed up to ®,

25
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Simulated and measured PAF

Magnitude [dB]

o [rad/s] LN ¢
-7 -100 ¢ [rad/m]

" 100

Almost bandlimited!

Measurement includes noise and temperature fluctuations

26



A Sampling Theorem for Acoustic Fields

Theorem [ASV:06]:

e Assume a max temporal frequency (g
e Pick a spatial sampling frequency @n > u"O/C

* Spatio-temporal signal interpolated from samples taken at (24,5, 2¢)
Argument:

e Take a cut through PAF

Use exp. decay away from central triangle to bound aliasing
Improvement using quincunx lattice

¢N > wo/c ST AE
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Classic Case: Subspaces

Shannon BL case z(t) = Z x(nT)sinc(t/T — n)
ncs

or 1/T degrees of freedom per unit time

But: a single discontinuity, and no more sampling theorem...

NG [F@)

TN i Y ram F /\’\x
NoA N\ N

- -

t W

Are there other signals with finite number of degrees of freedom per unit of time
that allow exact sampling results?

29
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Examples of non-bandlimited signals

Stream of Diracs
Poisson process

Bilevel signals
PPM,CDMA

_ _ _ Filtered stream of Diracs
Piecewise Polynomial Neural spikes
Woodcut picture UWB

\
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Classic Case and Beyond...

Is there a sampling theory beyond Shannon?

— Shannon: bandlimitedness is sufficient but not necessary
— Shannon bandwidth: dimension of subspace

— Shift-invariant subspaces: Similar dimension of subspace

Is there a sampling theory beyond subspaces?
— Finite rate of innovation: Similar to Shannon rate of information

— Non-linear set up

Thus, develop a sampling theory for classes of
non-bandlimited but sparse signals!

X(t) X [ XN-1
[ -
|

T

Xq

Generic, continuous-time sparse signal -



Sparsity and Signals with Finite Rate of Innovation

Sparsity:
— CT: parametric class, with degrees of freedom
(e.g. K diracs, or 2K degrees of freedom)

— DT: N dimensional vector x, and its |, norm K = | | x| |,.
Then K/N indicates sparsity

p : Rate of innovation or degrees of freedom per unit of time
— Call C; the number of degrees of freedom in the interval [-T/2,T/2], then

, 1
p= lim —=C7
T—o00
Compressibility:
— Object expressed in an ortho-basis has fast decaying NLA
For ex., decay of ordered wavelet coefficients in O(k?), a > 1.

I

32




Signals with Finite Rate of Innovation

The set up:

sampling kernel

For a sparse input, like a weighted sum of Diracs

One-to-one map y, < x(t)?
Efficient algorithm?

Stable reconstruction?
Robustness to noise?

Optimality of recovery?



A simple exercise in Fourier series

Periodic set of K Dirac pulses
— Is not bandlimited!

— HasaFourier series X

o — 7AW ik
LT E N, e Iem

T A
Fourier integral leads to

— K complex exponentials
— Exponents depends on location ¢;.
— Weight depends on .
If we can identify the exponents
— Diracs can be recovered

— Weights are a linear problem
(given the locations)

x [:f ]

-"Y'l‘i'!
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A Representation Theorem [VMB:02]

Theorem
Given x(t), a periodic set of K Diracs, of period t, weights {x,} and locations {t,}.

K
z(t) =) Y apd(t—tp — k'7)
k=1k'cz
Take a Dirichlet sampling kernel of bandwidth B, with Bt an odd integer > 2K
, sin(m Bt)
t) = B(t— k't
p(t) Z sinc(B( ) = Brsin(nt/T)

k'eZ
Then the N samples, N >Bt, T=1/N,

=) zpp(nT — ty)
k=1

are a sufficient characterization of x(t).

35



Linear versus non-linear problem

This is not a subspace problem! 0N

Problem is non-linear in t,,
and linear in x, given t,

Given two such streams of K Diracs,
and weights and locations {x,,t,} and {x’,,t’,}.

The sum is a stream with 2K Diracs.
et 1 A

But, given a set of locations {t,}
then the problem is linear in {x,}!

The key to the solution:
Separability of non-linear from linear problem

Note: Finding locations is a key task in estimation/retrieval of sparse signals,
but also in spectral estimation, error location in coding, in registration,
feature detection etc 36
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Sketch of Proof

The signal is periodic, so consider its Fourier series

x(t) = Z 6327rmt/7-’ where Z,, = Z ), —jQ’]Tmtk/T
meZ uk
1. Thesamplesy, are a sufficient characterizatlon of the central 2K+1
Fourier series coefficients (Sampling Thm. for BL FS).

2. The Fourier series is a linear combination of K complex exponentials.
These can be killed using an annihilation filter

K K
H(z) = )_ hkz_lC =[] (1 - wupz 1),
k=0 k=1

K
k=0

37
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Sketch of Proof (cont.)

3. To find the coefficients of the annihilating filter, we need to solve
a convolution equation, which leads to a K by K Toeplitz system

i Foo - Fg V[ Ry C Zy ]
o I T_K+1 ho | _ | 21
| Txk-2 Zx-3 - ZT-1 ] | hk | | TK-1 |

4. Given the coefficients {1, h,, h,, ... h,}, we get the {t,}'s by factorization of

K
Hz) = [[ Q@ —upzt).
k=1
5. To find the coefficients {x,}, we have a linear problem, since given the {t,}’s

or {u.}’s, the Fourier series is given by

1 & - 1 &
- > xke_jzﬂmtkﬁ == ) xpup.
T k=1 T k=1

— o J2mty/T

C,i'm:

This is a Vandermonde linear system, proving 2K+1 samples are sufficient! 7]
38
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Notes on Proof

The procedure is constructive, and leads to an algorithm:

1. Take 2K+1 samplesy, from Dirichlet kernel output

2. Compute the DFT to obtain Fourier series coefficients -K..K
3. Solve Toeplitz system of size K by K to get H(z)

4. Find roots of H(z) by factorization, to get u, and t,

5. Solve Vandermonde system of size K by K to get x,.

The complexity is:

1. Analog to digital converter
2. KlogK

3. K?

4. K3 (can be accelerated)

5. K?

et L L2

Or polynomial in K!

Note 1: For size N vector, with K Diracs, O(K3) complexity, noiseless
Note 2: Method similar to sinusoidal retrieval in spectral estimation and

39
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Generalizations [VMB:02]

For the class of periodic FRI signals which includes
— Sequences of Diracs
— Non-uniform or free knot splines
— Piecewise polynomials

There are sampling schemes with sampling at the rate of innovation with
perfect recovery and polynomial complexity

Variations: finite length, 2D, local kernels etc

x(t) h(t) y(t), yy,

40
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Generalizations [DVB:07]

Strang-Fix condition on sampling kernel:
Local, polynomial complexity reconstruction, for diracs and piecewise polynomials
Pure discrete-time processing!

ad(t-t) a d(t-t)

as(t-1,)
. a,3(t-t,)

(3 4
= et s ssmmmmma= T

t 0 t

En’yn=ao+al znnynzagtg—l—altl

adt-,)

a,8(t-t,)
a,8(-t,) LB

0 s t 0 t
P nyYn = Gfotg + a1t] e ny, = a,gtg + a,lt?
41
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eneralizations 2D extensions [MV:

Gaussan =ampling karnal
Finile =al o1 M=17 weiahled Dims= N

Sonvolulion wilh 1he sampling kearnal

Note: true 2D processing! 42
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The real, noisy case...

Acquisition in the noisy case:
analog noice digital noice

sampling kernel

p(t) F

it — t) y(t)

where “analog’”’ noise is before acquisition (e.g. communication noise on a channel) and
digital noise is due to acquisition (ADC, etc)

Example: Ultrawide band (UWB) communication....

Transmitted sequence of UWB pulses & Received signal

43



The real, noisy case...

Total Least Squares:
Annihilation equation: AJH = () can only be approximately satisfied.

nstead: Minimize||AH||* under constraint |[H|* =1

using SVD of a rectangular system

Cadzow denoising:
When very noisy: TLS can fail...

Use longer filter L > K, but use fact that noiseless matrix A is Toeplitz of rank K
Iterate between the two conditions

Algorithm:

Cadzow |[€—

Annihilating
Filter method

Linear system

(e
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Example

7 Diracs in 5dB SNR, 71 samples

Noiseless samples Criginal and estimated signal innovations : SNR =5 dB
- ' | 1.6F - -
] | + — original Diracs
1 14 t — estimated Diracs
0.5 A
0 | 1.2 A
—0.5 I . , . ] 1 * ‘
0 0.2 0.4 06 0.8 1
0.8/ A
MNoisy samples : SNR =5 dB I*
' ' 0.6 x
1t
04
05
0 0.2
-0.5 , | , 0
0 0-2 0.4 0.6 0.8 ! 0 0.2 0.4 0.6 0.8 1
Original and noisy version Original and retrieved Diracs

45



Find [x,,t, ] from noisy

samples [y,,Y,, - Yool

amplitude

The real world: -5dB Experiment

280 noiseless samples
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0 0.1 0.2

0.4

290 noisy samples : SNR = -5 dB

0.1 0.2

Original and estimated signal innovations : SNR = -5 dB; 'Observed’ SNR : -3.9777

0.4

A giginal Diracs

—k estimated Diracs

amplilude of the Diracs

*

0.1 0.2

04
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Compressed sensing

Consider a discrete-time, finite dimensional set up in RN:
Model:

— World is discrete, finite dimensional of size N
— x € RN, but |x],=K<< N, that is vector is K-sparse
— Alternatively, K sparse in a basis @
Method:
— Take M measurements, where K< M << N
— Measurement matrix F: a fat matrix of size M x N

L0 Measurement Matrix
[ ]

y = Fox -

47
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Geometry of the problem

Vastly under-determined system...

Infinite number of solutions...
— Fis a frame matrix, of size M by N, M << N
— Each set of K possible entries defines M by K mat

T

b
— Calculate projection of y onto range of F,, @k — Fk(F,ij)_ngy
— If g =y , possible solution

— There are ( ) matrices F,

— Ingeneral, choose ksuch that  min ||y — yk||
— Note: this is hopeless in general

Necessary conditions (for most inputs, or prob. 1)
— M>K
— all F, must have rank K
— all ranges of F, must be different

It requires completely different attacks!

48



Example: Fourier matrix

Vandermonde matrices satisfy the geometric conditions
— All submatrices F, of rank K
— All subspaces spanned by columns of F, are different
— Fourier case: Discrete finite rate of innovation matrix

L . 1

1 i .. vl
FEH ¥

j_ I{_.'E}i'—l o [{.-"iﬂh' —‘1}':.""5—1}

Conditioning can be an issue
— As N grows, K subsequent columns are “almost” co-linear
— Necessary to take M measurements that grows faster than N

49



CS: The power of random matrices!

Flurry of activity on efficient solutions Donoho, Candes et al
Set up: x € RN, but |x|,=K<< N : Ksparse, F of size M by N
Measurement matrix with random entries (gaussian, bernoulli)
— Pick M = O(K log N/K)
— With high probability, this matrix is good!
Condition on matrix F

— Uniform uncertainty principle or restricted isometry property
All K-sparse vectors x satisfy an approx. norm conservation

(1—=dr)lz|3 < [|[Fzll3 < (14 6x)zll3
Reconstruction Method:

— Solve linear program mm 121 y=Fzx
under constraint CRN

(Y

Strong result: |, minimization finds, with high probability, sparse solution, or

|, and |, problems have the same solution!

50



Sparse sampling and compressed sensing

Sparse sampling of signal innovations
+ Continuous or discrete, infinite or finite dimensional
+ Lower bounds (CRB) provably optimal reconstruction
+ Close to “real” sampling, deterministic
— Not universal, designer matrices
Compressed sensing
+ Universal and more general
T Probabilistic, can be complex
— Discrete, redundant
The real game:
In the space of frame measurements matrices F
e Best matrix? (constrained grassmanian manifold)
e Tradeoff for M: 2K, KlogN, Klog?N

e Complexity (measurement, reconstruction)

51
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2. Sampling: The linear case
3. Application: Sampling physics
4. Sampling: The non-linear case
5. Applications: The non-linear case
Joint sparsity estimation in distributed settings
Multichannel sampling
Super-resolution imaging
Other applications
6. Conclusions
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Applications: Joint Sparsity Estimation

Two non-sparse signals, but related by sparse convolution
— Often encountered in practice
— Distributed sensing
— Room impulse measurement

L i Al L -

Dec b—x1. @9

e Ag 7 -]

—
o

Question: What is the sampling rate region?
Similar to Slepian-Wolf problem in information theory

53
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Applications: Joint Sparsity Estimation

Sampling rate region:
— Universal (all signals): no gain!

— Almost surely (undecodable signals of measure zero)

M, > min{K+r N}
My > min{K +r, N}
My + M > min{N + K +r,2N}
M, > min{2K +1,N}
M, > min{2K +1,N}
My +M; > min{N +2K +1,2N}

Almost sure
K — recovery
I
|

Universal recovery

ki

M,

Annihilating
filter method

MM asdssteatassadsiiasser B eanen

54
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Applications: Joint Sparsity Estimation

Ranging, room impulse response, UWB:

— Know signal x,, low rate acquisition of x,

2

n 19
i " i ; TO0ImM I * ‘

T =+ D:l h T

Decoder

(L + 1) DFT Samples




Amplitude

Applications: Joint Sparsity Estimation

Experiment

— Known signal x,,
— Low rate acquisition of x,,

— Various sparsity levels for acquisition of x,

(=]
=

500
Samples

600

700

800

500

1000

(e
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RIR

T

'y
3
Z
3

L=156

m

L=120

-""%f”“"“.”""-

el
;lTl; AL

L=84

L=48

3 i 3 i 3 i 3 i 3 i 3 i 3 i
100 200 300 400 500 600 700

Samples

i 3
900 1000
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Super-resolution imaging

1. What is super-resolution?
Registration: Non-linear... Reconstruction: Linear!
2. Multi-channel sampling
Unknown shifts, unknown weights
3. Rank condition
Correct shifts lead to a low rank solution
4. A new algorithm
Efficient rank minimization

57




1. Registration and Reconstruction

58
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1. Registration and Reconstruction

\
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et
1. Registration and Reconstruction

1. Registration
Is a non-linear problem
Exhaustive search is possible but not computable...
Need for efficient and precise registration
Rank testing is a possibility
2. Reconstruction
Is a linear problem
Solution lives on a subspace

It amounts to solving a linear system of equations

60
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2. Multichannel Sampling

_‘-Ir_'ll' S L U

- Input: :z(t) bandlimited to [—o, 7|

- Unknown gains {«;. } and offsets{ 7« }

. . I o .
- Sub-Nyquist sampling: T <. — aliasing!

T
61



Ex: Emulate a single high-rate ADC by an array of low-rate ADCs

ADC
Analog e
Analog Front-End
Input i
Analog 1:4 ADC
Splitter
time-interleaving

- ldeal setup: uniform channel gains and 7 =

- In practice: nonuniform gains and timing skews Ty =

ADC

Digital Digital
Multiplexer Output

k—1
1
K
kB —1

K

T+ék:

62



Subsampling and Aliasing

Depending on sampling rate, 3 different cases

° fS > Qfma,a:

fmax

¢ fmaa: < fS < Qfma,a:

fmax

* s < Jmaz

Is

Is
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Related work: Lots!

Known gains and offsets:

- Periodic nonuniform sampling:
- [Yen: 56]
- [Sankur & Gerhardt: 73]

- [Seidner & Feder: 00]
stability and noise amplification

- [Bresler et al: 03]
filter bank reconstruction

- many others ...

- Generalized sampling expansions

- [Papoulis: 77]
- [Unser & Zerubia: 98]

Linear

Unknown gains and offsets:

- Time-Interleaved ADC corrections:

- [Black & Hodges: 80]
- [Fu et al: 98]

- [Jamal et al: 04]

- [Huang & Levy: 07]

- [Lim et al: 09]

- [McNeill et al: 09]

- Image registration and superresolution

- [Baker & Kanade: 00]

- [Elad, Milanfar et al: 04]
- [Vandewalle et al: 07]

- many others

Nonlinear!
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3. Rank Condition

Time:

I ['ﬂ-] — (¥ :'I:(n_.'T — q-k)

o I_I|
: | 1
[ I
__,-"---F 1 I
|
- bl
|
| 1 -
‘q . . _.I
= e - I - H F
R | - I

(P

ECHNIQUE

POLYT!

ALE DE LAUSANNE

Frequency:

(Y[ e -
T E X(w + 'ﬂ'.*..r_'.) e dlwtme)
T

T

Discrete-time FT: V), (w)

- Periodic

- A finite number of
frequency segments
folding on top of each other
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3. Rank Condition (cont.)

r|
() r i [11 i T 5
N it —nyl—< do | 1 System parameters:
. ) dpf T
, S/ S unknown gains: « = [ag, ..., ak]
— 'l'_"1|-|_r - Ty bl OO p——im| Recrmalruction
' def T
. unknown offsets: = = [7y...., 7x]
. 4 il
ottt — ] om L
diagonal matrix depending
In the Fourier domain: on channel gains .
unknown input
channel output \ /

Y (w) = Ar(w) Ag Ve X ()

I Vandermonde matrix depending

diagonal matrix dependingn shianiia] offisats

on channel offsets
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Sampling and reconstruction is possible

With unknown channel gains and offsets:

o
Ambiguities: {x(t), ax, Tk} vs {am(t —T), ;k, Te + T}

Set: a1 =1, 71 =0

Proposition: Almost all input z(t) can be uniquely determined by its channel samples
if and only if the channel sampling rate satisfies

1,9
T Ku

Oversampling to resolve parameter uncertainties
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Rank condition

The forward model:

Yw)=Ar(w)AaV+ X(w)

move A (w)to the left

ALY (@) = Aa Vi X (w) messll AL(w)Y (w) € R(AaV )

Key observations:

1. R (AoV +) has co-dimension one

def

2.D, = [AZ(w)Y (w1), AL (w2)Y (w2),...,A-(wN)Y (wn)] is rank-deficient



Linearization

Example: K = 3 (three channels)

Theorem: If the data matrix D.- is rank deficient, then

(Yi,n—l—21/2,n+1y3,n) U — (Yi,n+2}/j‘2,n}/3,n—l—1) v
— (Y1m11YonioY3n) u? + (Y1nYoni2Yani1) u’v
+ (Yin41Y2.0Y3042) V2 — (Y10Yont1Y3 na2) uv® =0,

def def 4 def
where Yy, = Yi(nAw), u'= 09T, ¢y = 092,

Key observations:

1. A system of multivariate polynomial equations (of u,v). Hard to solve!

2. Linearization: treatu, v, u?, u?v, v2, uv? as if they were independent
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Example

B (r
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Setup: three channels, each channel samples at one-half of the Nyquist rate.

Estimate: two unknown offsets 72, 73 (by assumption, 71 =0)

Comparison: [Vandewalle et al: 07] multiscale search

EUR W

0.08

0.08

0.07

0.06

0.05

0.04

003

002k

ooir

—— propased meathod
= & = melhod using matrix rank

SNR

=—f— proposed mathod
= & = methad using matrix rank

“success”, if [T — 7| < 0.001 |

1
5

1
10

1
15 20 25 30 35 40 45 50 55 &0 65 TO
SMNA
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Other examples: Inverse problems regularized by sparsity

Breast cancer detection

— Ultrasound transmission tomography

— Non-linear inverse problem

— Sparsity prior

— Initial results promising argmin

Conjugate Gradient Conjugate Gradient Compressed Sensing
30000 measurements 10000 measurements 10000 measurements
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Conclusions: Sampling is Alive and Well!

Sampling of sparse signals

— Sharp theorems

— Robust algorithms

— Provable optimality over wide SNR ranges
Many actual and potential applications

— Fit the model (needs some work)

— Apply the “right”” algorithm

— Catch the essence!

Still a number of good questions open, from the fundamental
to the algorithmic and the applications

— Non-linear problems (F is part of the problem)
— Regularization of the inverse problem

— Faster algorithms

— Designer matrices
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Publications

Special issue on Compressive Sampling:

— R.Baraniuk, E.Candes, R.Nowak and M.Vetterli
(Eds.)IEEE Signal Processing Magazine, March 2008. 10 & NN\ Comprassh
papers overviewing the theory and practice of Sparse 3 Tte SIS IR
Sampling, Compressed Sensing and Compressive
Sampling (CS).

Basic paper:

— M.Vetterli, P. Marziliano and T. Blu, “Sampling Signals
with Finite Rate of Innovation,” IEEE Transactions on Sparse Samplmg

Signal Processing, June 2002. of Signal Innovations
Main paper, with comprehensive review:

— T.Blu, P.L.Dragotti, M.Vetterli, P.Marziliano, and

Theary, algarithms, and performance bounds

L.Coulot,“Sparse Sampling of Signal Innovations: m“m"“’“

Theory, Algorithms and Performance Bounds,” IEEE b

Signal Processing Magazine, Special issue on T e
Compressive Sampling, March 2008. T
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Publications

For more details:

P.L. Dragotti, M. Vetterli and T. Blu, “Sampling Moments and Reconstructing
Signals of Finite Rate of Innovation: Shannon Meets Strang-Fix,” IEEE
Transactions on Signal Processing, May 2007.

P. Marziliano, M. Vetterli and T. Blu, Sampling and exact reconstruction of
bandlimited signals with shot noise, IEEE Transactions on Information Theory,
Vol. 52, Nr. 5, pp. 2230-2233, 2006.

|. Maravic and M. Vetterli, Sampling and Reconstruction of Signals with Finite
Rate of Innovation in the Presence of Noise, IEEE Transactions on Signal
Processing, Aug. 2005.

A. Hormati, O. Roy, Y.M. Lu and M. Vetterli, Distributed Sampling of Signals
Linked by Sparse Filtering: Theory and Applications, IEEE Transactions on Signal
Processing, Vol. 58, Nr. 3, pp. 1095 - 1109, 2010.

Y.Lu and M.Vetterli, Multichannel sampling with unknown gains and offsets: A
fast reconstruction algorithm, Allerton 2010.

A. Hormati, I. Jovanovic, O. Roy, and M. Vetterli, "Robust ray-based
reconstruction in ultrasound tomography", SPIE Medical Imaging, 2010.
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Thank you for your attention !

Lausanne, November 6th, 2009

Any questions ?
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